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Abstract. Biofertilizers contain N-fixing and P-solubilizing bacteria. The microbial population is 
dynamic and influenced by nutrient availability and storage temperature. Maintaining microbial 
populations requires appropriate carrier media to maximize microbial viability. The aim of the 
research is to determine the appropriate carrier material for the biofertilizer after storage based 
on the nutrient content and microbial population. The experiment utilized a completely 
randomized design with seven treatments and four replications, resulting in 28 experimental units. 
The treatments were as follows: B0 = Compost, B1 = Compost + Bacteria (Azotobacter and 
Pseudomonas fluorescens), B2 = Compost + Bacteria (Azotobacter + P. fluorescens) + Molasses, 
B3 = Compost + bacteria (Azotobacter + P. fluorescens) + CMC, B4 = Compost + bacteria 
(Azotobacter + P. fluorescens) + Arginine, B5 = Compost + bacteria (Azotobacter + P. 
fluorescens) + Sugar + CMC, and B6 = Compost + bacteria (Azotobacter + P. fluorescens) + 
Molasses + Arginine. The study results showed that the highest bacterial colonies were observed 
seven days after storage in treatment B2, reaching 156.33 CPU. The highest bacterial population 
growth in the first month was recorded in treatment B5; however, in months 2, 3, 4, and 5, 
treatment B2 exhibited the highest bacterial colony population. The pH remained more stable in 
treatments B2, B4, and B6. The highest nutrient content, including pH, N, P, K, and C/N ratio, 
was recorded in treatment B2, respectively, with values of 6.67, 2.49%, 2.04%, 1.77%, and 20.01. 
Findings in this study suggested the potential biofertilizer can be applied in the field to reduce 
dependence on chemical fertilizers to support sustainable agriculture. 
Keywords: azotobacter, biofertilizer; carrier materials; compost; pseudomonas fluorescens; 

molasses. 
 

Type of the Paper: Regular Article. 

1. Introduction 

Nitrogen and phosphorus are essential macronutrients for plant growth. Nitrogen is highly 

susceptible to decomposition, loss, leaching, and evaporation. The P element is mostly bound by 

Al and Fe, leaving only a small fraction available for plant uptake. This limited absorption 

increases production costs for farmers. Intensive use of chemical fertilizers depletes soil organic 

matter levels, damages soil structure, and causes environmental pollution [1].  
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 An effective solution is the use of biofertilizers containing rhizobacteria groups, which play 

a role in encouraging plant growth, maintaining soil health, and functioning well under biotic stress 

conditions [2]. Biofertilizers contain nitrogen-fixing microbes, phosphate solvents, potassium 

solvents, plant growth promoters, arbuscular mycorrhizal fungi, and increase the production of 

various enzymes, resulting in a better level of waste degradation [3-6]. The prospect of this 

beneficial biofertilizer can be used as a prerequisite in sustainable agriculture [7]. 

The use of biofertilizers saves production costs and improves plant growth performance 

[8,9]. The application of biofertilizers to rice plants using the System of Rice Intensification (SRI) 

method increases production by up to 10.3 tons/ha (24%) from conventional systems and can 

reduce the use of chemical fertilizers, especially P, by up to 50% [10]. 

Biofertilizer technology is constrained by the short shelf life of microbes in biofertilizers. 

The durability and efficiency of rhizobacteria microbial performance in biofertilizer formulations 

are highly determined by the carrier material and storage temperature [11,12]. Research on 

biofertilizer formulations has been widely conducted and evaluated, but to date very little data has 

been obtained on the shelf life of biofertilizers and is very inadequate. Research must be intensified 

to develop stable, functional, and reliable biofertilizer inoculants as a tool for sustainable 

agriculture [13]. 

Biofertilizer storage is feasible in a room so that it can be easily integrated into an agricultural 

distribution system that does not have a cooling room [14]. The novelty of this research is the 

microbes used in biofertilizer from the rhizosphere of indigenous rice plants. The formula for 

organic biofertilizer from rice harvest residues, there is no similar data from previous research  

As biofertilizer effectiveness depends on microbial activity, it is essential to determine the 

duration of microbial viability in biofertilizers. Hence, the aim of the research was to determine 

the appropriate carrier material for biofertilizer after storage, based on nutrient content and 

microbial population. 

2. Materials and Methods  

2.1. Time dan place 

The research was conducted at the Biology Laboratory of the Politeknik Pertanian Negeri 

Payakumbuh from March to August 2024. The materials used included organic residues from rice 

harvest (straw, husks, bran), cow dung, indigenous Trichoderma spp. [15], and indigenous bacteria 

(Azotobacter, Pseudomonas fluorescens) [16,17]. The equipment used included petri dishes, 

measuring cups, conductors, and aerators. 

2.2. Experimental design 

The study employed a Randomized Block Design with 7 treatments and 4 replications, 

resulting in 28 experimental units. The treatments were as follows: B0 = Compost, B1 = Compost 
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+ bacteria (Azotobacter + P.fluorescens) + Sugar, B2 = Compost + bacteria (Azotobacter + 

P.fluorescens) + Molasses, B3 = Compost + bacteria (Azotobacter + P.fluorescens) + CMC, B4 = 

Compost + bacteria (Azotobacter + P.fluorescens) + Arginine, B5 = Compost + bacteria 

(Azotobacter + P.fluorescens) + Sugar + CMC, and B6 = Compost + bacteria (Azotobacter + 

P.fluorescens) + Molasses + Arginine. 

2.3. Work procedures 

2.3.1. Microbial enrichment 

Trichoderma harzianum, used as a decomposer, was propagated on a bran and husk medium 

(2:1). The husks were soaked overnight, drained, mixed with bran, and packed in 250 g plastic 

bags. The mixture was then sterilized in an autoclave at 1 atm for 1 hour, cooled, inoculated with 

Trichoderma harzianum culture, and incubated for 5 days. The spore density of Trichoderma sp. 

was 103 spores per gram. 

Indigenous bacteria (Azotobacter and P.fluorescens) were re-cultured on NA medium 

supplemented with 0.01 ml FeCl3. The bacterial culture was then mass propagated in coconut 

water at a ratio of 1 ose of pure Azotobacter and P.fluorescens per liter of coconut water. The 

culture was incubated for 7 days using an aerator. A total of 100 ml (50 ml each mass propagation) 

was added. 

The formula treatment included CMC (0.1 mg/30kg) and Arginine (0.1 mg/30kg) to prevent 

rhizocbacteri from becoming inactive during storage and to reactivate their metabolism upon 

application. Granulated sugar (10 gr/30 kg) and molasses (10 mL/30kg) served as microbial 

nutrition. 

2.3.2.  Compost making process 

Compost was prepared using a formula consisting of organic materials from rice harvest 

residues (straw, husks, bran) and dried-cow dung that has been air-dried for one week in a ratio of 

4: 6 (based on the dry weight). A total of 840 kg of compost was produced, with each treatment 

unit consisting of 30 kg. Trichoderma harzianum was used as a decomposer at a rate of 100 gr/30 

kg. 

At the beginning of compost preparation, a layered system of organic materials were layered 

with cow dung and Trichoderma harzianum as decomposers. Microbes and additives were applied 

according to the treatment, and the compost was then covered with black plastic and incubated. 

Temperature was monitored every three days using a thermometer for up to eight weeks. The 

compost was first turned on the seventh day and subsequently repeated once a week.  

2.3.3. Biofertilizer Formulation Shelf Life Test 

After a 56-day incubation period, 1 kg of compost from each treatment unit was sampled 

and packaged for storage tests based on the number of treatments. Observations were conducted 
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monthly for each treatment.  

Observations included: (1) temperature during composting, (2) the number of bacterial 

colonies in each biofertilizer treatment after 7 days was counted in pure culture, (3) the number of 

bacterial colonies each month of storage in pure culture, (4) the pH value of the biofertilizer after 

storage, and (5) the nutrient value of the biofertilizer after storage. 

2.3.4. Data analysis 

Data were analyzed using analysis of variance (ANOVA). When significant differences were 

detected, Duncan’s New Multiple Range Test (DNMRT) was performed at 5% significance level. 

3. Results and Discussion 

3.1. Temperature 

The results of observations on temperature during the composting process can be seen in 

Fig. 1. The initial temperature of the pile of organic materials was 22°C, which was the same as 

the ambient temperature. The temperature of the pile was monitored every three days and reached 

a peak between 35°C and 47°C on the 15th day. After the peak, the temperature of the pile 

fluctuated between 23°C and 25°C. The temperature variation in each biofertilizer pile depended 

on microbial activity and the aeration provided during the turning process. Temperature plays a 

crucial role in regulating microbial activity during the decomposition of organic materials into 

compost. Proper aeration during compost turning enhances microbial growth, accelerating 

decomposition [18]. 

 
Fig. 1. There is an increase in temperature in the pile of composted organic materials. 

 

On the 42nd day, the temperature of the biofertilizer pile decreased to between 30°C and 

42°C. By the 57th day, the temperature stabilized, ranging from 24°C to 28°C. During the cooling 

phase, the biofertilizer temperature remained consistent within the 24°C to 28°C range. The 
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ambient temperature throughout the composting process fluctuated between 22°C and 26°C. 

3.2. Microbial population after seven days of biofertilizer storage 

The number of bacterial colonies in the formulated media containing indigenous Azotobacter 

and Pseudomonas fluorescens isolates after seven days, as determined through statistical analysis, 

is presented in Table 1. 

Table 1.  Number of bacterial colonies of Azotobacter and indigenous P. flourescens isolate 
formulations 

Treatment CPU Bacterial Colony 
Count 

B0 = Compost  10.33 g   x 108      
B1 = Compost + bacteria (Azotobacter + P.fluorescens) + Sugar  43.67 de  x 108     
B2 = Compost + bacteria (Azotobacter + P.fluorescens) + Molasses 156.33 a  x 108     
B3 = Compost + bacteria (Azotobacter + P.fluorescens) + CMC   31.00 f  x 108    
B4 = Compost + bacteria (Azotobacter + P.fluorescens) + Arginine,   38.67 ef x 108     
B5 = Compost + bacteria (Azotobacter + P.fluorescens) + Sugar + CMC 128.00 c  x 108   
B6 = Compost + bacteria (Azotobacter + P.fluorescens) + Molasses + 
Arginine 133.33 bc x 108     

According to DNMRT, the numbers in the columns followed by the same capital letter are not significantly different 
at the   5% level of significance. 

 
Table 1 shows that the highest number of indigenous Azotobacter and P. fluorescens 

bacterial colonies after seven days observation after storage was observed in treatment B2 

(Compost + bacteria (Azotobacter + P. fluorescens) + Molasses). This shows that the addition of 

molasses promotes bacterial growth. Molasses, a byproduct of sugarcane processing, is applied in 

liquid form to biofertilizer, providing an accessible nutrient source and energy for bacteria. In 

addition, molasses contains essential vitamins and minerals absent in refined sugar, including 

manganese (13%), magnesium (12%), copper (11%), potassium (6%), selenium (6%), iron (5%), 

calcium (3%), and B vitamins (B3, B5, and B6).  

Microorganism growth media consists of a mixture of nutrients essential for microbial 

growth. Microorganisms utilize these nutrients in their simplest forms to synthesize cellular 

components [19]. 

3.3. Microbial population in biofertilizer during storage 

The results of biofertilizer storage tests on the bacterial colony population per unit after 5 

months of storage are presented in Fig. 2. As shown in Fig. 2, the highest bacterial colony 

population with statistically significant (p<0.05) in the first month of storage was obtained in 

media B5 = Compost + bacteria (Azotobacter + P. fluorescens) + Sugar + CMC (158 CPU). A 

substantial bacterial colony population was also recorded in treatment B2 (Compost + Bacteria 

(Azotobacter + P. fluorescens) + Molasses) during the first month. Similarly, treatment B6 

(Compost + Bacteria (Azotobacter + P. fluorescens) + Molasses + Arginine) exhibited high 

bacterial colony count in the first month. The addition of sugar and molasses as carrier materials 

appears to enhance nutrient availability, thereby accelerating bacterial population growth. 
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Fig. 2. Population growth of Azotobacter and P.fluorescens bacteria on various media 

In the second month, the bacterial population increased in all treatments, with the highest 

bacterial count observed in treatment B2, consisting of compost, Azotobacter, P. fluorescens, and 

molasses. This trend continued in the third and fourth months, before a decline was noted in the 

fifth month. These results suggest that compost supplemented with molasses provides adequate 

nutrition to support bacterial growth. 

In the third month, the highest populations of Azotobacter and P. fluorescens were observed 

across all storage treatments. The treatment B2, consisting of compost, Azotobacter, P. 

fluorescens, and molasses, exhibited the highest bacterial colony count. 

Furthermore, during the 4th and 5th months of storage, the population of Azotobacter and P. 

flourescens bacteria began to decline across all treatments. However, the highest bacterial 

population of Azotobacter and P. fluorescens bacteria was still observed in the B2 treatment 

(Compost + Bacteria (Azotobacter + P. fluorescens) + Molasses). This suggest that biofertilizer 

supplemented with molasses and granulated sugar maintained a higher bacterial count compared 

to other treatments. This result indicate that the carrier materials molasses and granulated sugar 

serve as effective nutrient sources for microbial growth, enhancing their activity in the biofertilizer. 

Microorganisms utilize nutrients for growth through biosynthetic processes, leading to the 

production of new cell material or biomass. This process results in an increase in the size of 

microbial cells over time. As microbial biomass and the number of microbial individuals grow, 

the overall population increases. The extent of this population growth largely depends on the 

composition and physical conditions of the growth environment, which must be conducive to 

supporting the microorganisms' biosynthesis of new biomass [20]. 

A major limitation of biofertilizers is their short shelf life, primarily due to challenges in 

long-term storage. However, the shelf life of biofertilizers can be extended through strategies such 

as the use of heat- and drought-tolerant bacterial strains, genetic engineering, and the development 

of liquid biofertilizer formulations [21]. 
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3.4. pH 

 The results of the biofertilizer analysis after storage against pH are presented in Table 2. 

The results in Table 2 indicate that biofertilizers made solely from compost (B0) experienced a 

drastic decrease in pH after storage. This indicates that, in the absence of Azotobacter bacteria with 

P. fluorescens, the decomposition of organic matter occurs rapidly, leading to a pH decline. 

Treatments containing granulated sugar, CMC, and arginine also showed a decrease in pH. 

However, in the treatments with molasses, the pH of the biofertilizer remained stable before and 

after storage. 

Table 2. Biofertilizer pH value after storage for 5 months 

Treatment. 
Biofertilizer stability during storage. 

Soil Acidity pH 
Initial Final Status 

B0 = Compost/control 6.24 5.63 Decreased 
drastically 

B1 = Compost + bacteria (Azotobacter + 
P.fluorescens) + Sugar 

6.56 6.22 Decreased 

B2 = Compost + bacteria (Azotobacter + 
P.fluorescens) + Molasses 

6.72 6.72 Stable 

B3 = Compost + bacteria (Azotobacter + 
P.fluorescens) + CMC 

6.53 6.35 Decreased 

B4 = Compost + bacteria (Azotobacter + 
P.fluorescens) + Arginine, 

6.55 6.55 Stable 

B5 = Compost + bacteria (Azotobacter + 
P.fluorescens) + Sugar + CMC 

6.53 6.24 Decreased 

B6 = Compost + bacteria (Azotobacter + 
P.fluorescens) + Molasses + Arginine 

6.22 6.22 Stable 

 

The pH change in the compost media as a carrier material for the inoculant is more drastic 

in the absence of Azotobacter and P. fluorescens, which serve as key regulators of the biofertilizer 

nutrient availability. This is due to the continued decomposition of organic matter during 

incubation or storage, leading to carbon release and increased concentration of H+, as indicated by 

a significant pH decline (6.2 to 5.63). The high nutritional content of molasses such as Fe and Mn 

can produce H+ so that it can stabilize the pH value. 

 The pH value of compost after storage is influenced by the availability of nutrients for 

microbes in the biofertilizer. Great energy availability for microbes results in more stable pH 

values [22]. During the initial composting process, the pH increases due to the activity of 

indigenous Trichoderma sp. Decomposer, which breaks down organic nitrogen into ammonia, 

creating alkaline conditions. By the end of the composting, the pH decreases toward a neutral 

range of 6.9-7.26, indicating reduced nitrogen decomposition [23]. The decrease in pH is 

associated with volatilization (ammonia) and microbial nitrification, which produces more CO2 

and acid [24]. The ideal pH value for compost is generally 5.5-8 [25]. 
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3.5. Biofertilizer nutrient content 

Nutrient content with various substitute materials during storage for C-org, C/N, N, P and K 

is presented in Table 3. 

Table 3.  Characteristics of nutrient content analysis of C-org, C/N, N, P and K biofertilizer with 
Azotobacter and P. fluorescens bacteria after being stored for 5 months 

Treatment 

 Characteristics of biofertilizer product 
components 

C-org 
(%) 

C/N N-total 
(%) 

P-total 
(%) 

K-total 
(%) 

B0 = Compost/control 49.15 21.56 1.88 1.13 1.45 
B1 = Compost + bacteria (Azotobacter + 
P.fluorescens) + Sugar 

49.32 20.38 2.42 1.84 1.64 

B2 = Compost + bacteria (Azotobacter + 
P.fluorescens) + Molasses 

49.84 20.01 2.49 2.24 2.12 

B3 = Compost + bacteria (Azotobacter + 
P.fluorescens) + CMC 

49.65 20.51 2.42 1.95 1.76 

B4 = Compost + bacteria (Azotobacter + 
P.fluorescens) + Arginine, 

49.65 20.86 2.38 1.85 1.65 

B5 = Compost + bacteria (Azotobacter + 
P.fluorescens) + Sugar + CMC 

49.65 20.51 2.42 1.85 1.75 

B6 = Compost + bacteria (Azotobacter + 
P.fluorescens) + Molasses + Arginine 

49.52 21.34 2.32 1.83 1.66 

3.5.1. C-organik and C/N 

The lowest C-organic nutrient content after storage was observed in B2 treatment. Prolonged 

storage led to a decline in carbon content, as carbon serves as an energy source for microbial 

reproduction. Microbes use energy derived from biochemical reactions to decompose organic 

matter. Carbohydrates in the biofertilizer break down into CO2 and H2O gases, a process that 

continues during the storage process, leading to reduction in carbon content. The C-organic content 

in biofertilizer plays a crucial role in improving soil properties. 

The C/N ration in the B2 treatment was 20.01 after 5 months of storage. The B2 treatment 

is categorized as the best biofertilizer formulation, as the addition of molasses stimulates the 

activity of Azotobacter and P. fluorescens, ensuring nutrients availability remains high after 

storage. An optimal C/N ratio is crucial for maintaining a balanced and efficient nutrient profile in 

the compost mixture.   

The optimum C/N ratio is important for maintaining an efficient nutrient balance in the 

compost mixture. As the composting process progresses, the C/N value varies due to carbon 

conversion into CO₂ during organic degradation. The ideal C/N ratio for composting ranges from 

25 to 35 [26]. Microorganisms require approximately 30 parts C per unit N during the composting 

process [27]. Several researchers state that the favorable C/N ratio for the composting process falls 

between 20 and 50 [26]. 
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3.5.2. Total - N 

The total N value of biofertilizer after storage in all treatments with the addition of 

Azotobacter and P. fluorescens bacteria was > 2, with the highest value was recorded in treatment 

B2. Molasses additives helped sustain the viability of N-fixing microbes for a longer period. The 

total N value is closely related to carbon content and C/N ratio. The availability of total N nutrition 

results from the activity of N-fixing microbes (Azotobacter) in biological N2 Fixation (BNF), 

which converts atmospheric N2 into ammonia. Plants absorb nitrogen through a complex 

enzymatic process known as the nitrogenase process. The longer N-fixing remains viable, the N 

nutrient will always be available [28]. 

3.5.3. Total - P 

The total P nutrient content value after storage was obtained in the B2 treatment. The P 

nutrient content of the compost is determined by the raw materials of the compost and the 

decomposing microorganisms. Compost serves as the key ingredient of biofertilizer plus 

Azotobacter and P. fluorescens bacteria, classified as phosphate-solubilizing microorganisms and 

other additional materials, particularly molesse. Phosphate-solubilizing microorganisms produce 

organic acids to dissolve unavailable P into available P [29]. The addition of phosphate-

solubilizing microbes to the biofertilizer increases P nutrient utilization efficiency [30]. Besides 

supporting plant and soil health, these microbes also produce low molecular weight organic acids 

such as oxalic acid, propenadioic acid, acetic acid and arylic acid [31]. 

3.5.4. Total - K 

The K-total value of biofertilizer after storage for all treatments with added Azotobacter and 

P. fluorescens bacteria ranged from 1.64% to 1.77%, with the highest K-total value observed in 

treatment B2. However, the K-total value remains relatively low. The incorporation of K-

solubilizing bacteria into biofertilizers has the potential to increase the K-total value, thereby 

promoting plant growth and potentially replacing chemical potassium fertilizers. This approach 

can also contribute to reducing environmental pollution [32]. 

4. Conclusions 

This study concluded that the B2 treatment, consisting of compost, Azotobacter, 

Pseudomonas fluorescens, and molasses, was the most effective biofertilizer formulation after five 

months of storage. B2 demonstrated the highest bacterial colony count (156.33 CFU/g) after seven 

days and consistently maintained the highest microbial population from the second to the fifth 

month. Additionally, B2 exhibited the most stable pH, reaching 6.67, and superior nutrient content 

with the highest total nitrogen (2.49%), total phosphorus (2.04%), total potassium (1.77%), and an 

optimal C/N ratio of 20.01. These results indicate that the B2 formulation supports excellent 
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microbial viability and nutrient stability, making it a promising biofertilizer for long-term use.  
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