Growth and Yield Production of Pakcoy as Influenced by Artificial Light Irradiation
##plugins.themes.academic_pro.article.main##
Abstract
Artificial light in indoor plant production is still a challenge related to the amount of electrical energy used, such as in the Pakcoy plant. The Pakcoy plant has nutritional and economic value and is usually used as a research indicator plant. This study aimed to determine the effect of artificial light irradiation on the growth and yield of Pakcoy plants. The research was conducted in a plant factory in an indoor hydroponic system, with LED light of 100 umol/m2/s as a light source for the growth of Pakcoy plants. The artificial light irradiation length treatment consisted of 4 levels, namely 12 hours/day, 16 hours/day, 20 hours/day, and 24 hours/day. The most significant growth, yield, and content of vitamin C in Pakcoy plants were obtained in maximum artificial light exposure for 24 hours/day, and the highest protein content was obtained in the long irradiation treatment for 16 hours/day.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Aji, G. M., Pratiwi, A. F., & Utami, S. W. (2022). Rancang Bangun Sistem Plant Factory untuk Produksi Tanaman Pakcoy (Brassica rapa L.). Agroteknika, 5(2). https://doi.org/https://doi.org/10.55043/agroteknika.v5i2.149
- Cocetta, G., Casciani, D., Bulgari, R., Musante, F., Kołton, A., Rossi, M., & Ferrante, A. (2017). Light use efficiency for vegetables production in protected and indoor environments. European Physical Journal Plus, 132(1). https://doi.org/10.1140/epjp/i2017-11298-x
- Egorova, K. V., Sinyavina, N. G., Artemyeva, A. M., Kocherina, N. V., & Chesnokov, Y. V. (2021). Qtl analysis of the content of some bioactive compounds in brassica rapa l. Grown under light culture conditions. Horticulturae, 7(12), 1–22. https://doi.org/10.3390/horticulturae7120583
- Fairuzia, F., Sobir, S., Maharijaya, A., Ochiai, M., & Yamada, K. (2022). Longday Photoperiod Accelerates Flowering in Indonesian Non-Flowering Shallot Variety. AGRIVITA Journal of Agricultural Science, 44(2), 216–224. https://doi.org/10.17503/agrivita.v44i2.3053
- Fan, R., Liu, H., Zhou, S., He, Z., Zhang, X., Liu, K., … Lu, W. (2020). CFD simulation of the airflow uniformity in the plant factory. IOP Conference Series: Earth and Environmental Science, 560(1). https://doi.org/10.1088/1755-1315/560/1/012074
- Gabriel, A. A., & Shafri, M. H. (2022). The Effect of Nutrition and Planting Media on the Productivity and Quality of Baby Kai-Lan (Brassica oleracea var. alboglabra) Cultivated Using Nutrient Film Technique System. AGRIVITA Journal of Agricultural Science, 44(3), 490–499. https://doi.org/10.17503/agrivita.v44i3.2810
- Harun, A. N., Mohamed, N., Ahmad, R., Rahim, A. R. A., & Ani, N. N. (2019). Improved Internet of Things (IoT) monitoring system for growth optimization of Brassica chinensis. Computers and Electronics in Agriculture, 164(July 2018), 104836. https://doi.org/10.1016/j.compag.2019.05.045
- Kang, J. H., KrishnaKumar, S., Atulba, S. L. S., Jeong, B. R., & Hwang, S. J. (2013). Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Horticulture Environment and Biotechnology, 54(6), 501–509. https://doi.org/10.1007/s13580-013-0109-8
- Liu, K., Gao, M., Jiang, H., Ou, S., Li, X., He, R., … Liu, H. (2022). Light Intensity and Photoperiod Affect Growth and Nutritional Quality of Brassica Microgreens. Molecules, 27(3). https://doi.org/10.3390/molecules27030883
- Lobiuc, A., Vasilache, V., Oroian, M., Stoleru, T., Burducea, M., Pintilie, O., & Zamfirache, M.-M. (2017). Blue and Red LED Illumination Improves Growth and Bioactive Compounds Contents in Acyanic and Cyanic Ocimum basilicum L. Microgreens. Molecules, 22(12), 2111. https://doi.org/10.3390/molecules22122111
- Lu, N., Song, C., Kuronuma, T., Ikei, H., Miyazaki, Y., & Takagaki, M. (2020). The possibility of sustainable urban horticulture based on nature therapy. Sustainability (Switzerland), 12(12), 1–11. https://doi.org/10.3390/su12125058
- Mao, H., Hang, T., Zhang, X., & Lu, N. (2019). Both Multi-Segment Light Intensity and Extended Photoperiod Lighting Strategies, with the Same Daily Light Integral, Promoted Lactuca sativa L. Growth and Photosynthesis. Agronomy, 9(12), 857. https://doi.org/10.3390/agronomy9120857
- Meas, S., Luengwilai, K., & Thongket, T. (2020). Enhancing growth and phytochemicals of two amaranth microgreens by LEDs light irradiation. Scientia Horticulturae, 265(January), 109204. https://doi.org/10.1016/j.scienta.2020.109204
- Mickens, M. A., Torralba, M., Robinson, S. A., Spencer, L. E., Romeyn, M. W., Massa, G. D., & Wheeler, R. M. (2019). Growth of red pak choi under red and blue, supplemented white, and artificial sunlight provided by LEDs. Scientia Horticulturae, 245(October 2018), 200–209. https://doi.org/10.1016/j.scienta.2018.10.023
- Paradiso, R., & Proietti, S. (2022). Light-Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. Journal of Plant Growth Regulation, 41(2), 742–780. https://doi.org/10.1007/s00344-021-10337-y
- Pennisi, G., Pistillo, A., Orsini, F., Cellini, A., Spinelli, F., Nicola, S., … Marcelis, L. F. M. (2020). Optimal light intensity for sustainable water and energy use in indoor cultivation of lettuce and basil under red and blue LEDs. Scientia Horticulturae, 272(May), 109508. https://doi.org/10.1016/j.scienta.2020.109508
- Riikonen, J., Kettunen, N., Gritsevich, M., Hakala, T., Särkkä, L., & Tahvonen, R. (2016). Growth and development of Norway spruce and Scots pine seedlings under different light spectra. Environmental and Experimental Botany, 121, 112–120. https://doi.org/10.1016/j.envexpbot.2015.06.006
- Son, K. H., Jeon, Y. M., & Oh, M. M. (2016). Application of supplementary white and pulsed light-emitting diodes to lettuce grown in a plant factory with artificial lighting. Horticulture Environment and Biotechnology, 57(6), 560–572. https://doi.org/10.1007/s13580-016-0068-y
- Tan, W. K., Goenadie, V., Lee, H. W., Liang, X., Loh, C. S., Ong, C. N., & Tan, H. T. W. (2020). Growth and glucosinolate profiles of a common Asian green leafy vegetable, Brassica rapa subsp. chinensis var. parachinensis (choy sum), under LED lighting. Scientia Horticulturae, 261(October 2018), 108922. https://doi.org/10.1016/j.scienta.2019.108922
- Utami, S. W., & Kristiningsih, A. (2021). The Effectiveness of Cattle Biogas Waste on Corn Straw Protein Levels for Animal Feed. Journal of Sustainable Research In Management of Agroindustry (SURIMI), 1(2), 5–9. https://doi.org/10.35970/surimi.v1i2.886
- Viršilė, A., Brazaitytė, A., Vaštakaitė-Kairienė, V., Miliauskienė, J., Jankauskienė, J., Novičkovas, A., & Samuolienė, G. (2019). Lighting intensity and photoperiod serves tailoring nitrate assimilation indices in red and green baby leaf lettuce. Journal of the Science of Food and Agriculture, 99(14), 6608–6619. https://doi.org/10.1002/jsfa.9948
- Yan, Z., He, D., Niu, G., & Zhai, H. (2019). Evaluation of growth and quality of hydroponic lettuce at harvest as affected by the light intensity, photoperiod and light quality at seedling stage. Scientia Horticulturae, 248(August 2018), 138–144. https://doi.org/10.1016/j.scienta.2019.01.002
- Zhang, X., Wang, J., Zheng, J., Ning, X., Ingenhoff, J., & Liu, W. (2020). Design of artificial climate chamber for screening tea seedlings’ optimal light formulations. Computers and Electronics in Agriculture, 174(May). https://doi.org/10.1016/j.compag.2020.105451
- Zou, T., Huang, C., Wu, P., Ge, L., & Xu, Y. (2020). Optimization of artificial light for spinach growth in plant factory based on orthogonal test. Plants, 9(4). https://doi.org/10.3390/plants9040490