Characterization of Rubber Seed (Hevea Brasiliensis) as Raw Material for The Production of Biofuel


Ayuni Lestari
Muhammad Yerizam
Abu Hasan


Rubber seeds from the Musi Rawas region in South Sumatra have great potential for rubber seed plantations. However, their utilization has not been maximized and they are often treated as plantation waste. This research aims to obtain the characteristics of rubber seeds as raw materials for biofuel production, so that the rubber seeds from the South Sumatra region can be utilized by the community and not just considered as plantation waste. In the first treatment, the rubber seeds are crushed to obtain the seed coat and the kernel. The crushed rubber seed shells are finely ground and sieved, while the kernel is pressed to extract vegetable oil using a pressing tool. The test methods used to determine the characteristics of the rubber seed shells include proximate analysis and calorific value, while GC-MS analysis is employed for the rubber seed oil. The proximate analysis of the rubber seed shell (RSS) yielded the following results: moisture content of 15.97 wt%, volatile matter of 47.43 wt%, fixed carbon of 32.45 wt%, and ash content of 4.15 wt%. The calorific value of the rubber seed shell was found to be 3312.8694 calories per gram. For the GC-MS yield of the rubber seed oil, the composition is as follows: palmitic acid 7.32%, linoleic acid 34.69%, oleic acid 45.35%, and pentadecanoic acid 8.86%. Based on the obtained results, rubber seeds show promising potential as raw materials for biofuel production through the pyrolysis process.


Author Biographies

Ayuni Lestari, Politeknik Negeri Sriwijaya

Department of Renewable Energy Engineering

Muhammad Yerizam, Politeknik Negeri Sriwijaya

Department of Renewable Energy Engineering

Abu Hasan, Politeknik Negeri Sriwijaya

Department of Renewable Energy Engineering

How to Cite
Lestari, A., Yerizam, M., & Hasan, A. (2023). Characterization of Rubber Seed (Hevea Brasiliensis) as Raw Material for The Production of Biofuel. Journal of Applied Agricultural Science and Technology, 7(3), 217-224.


  1. Asomaning, J., Mussone, P., & Bressler, D. C. (2014). Thermal deoxygenation and pyrolysis of oleic acid. Journal of Analytical and Applied Pyrolysis, 105, 1–7.
  2. [ASTM] D-3174. (2012). Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal. ASTM International.
  3. [ASTM] D-3175. (2011). Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. ASTM International.
  4. Budiastuti, H., Hanifah, N. A., Mardiani, D. U., Haryadi, H., Rusdianasari, R., & Fudholi, A. (2022). Biodiesel Production from Rubber Seed Oil as An Alternative Energy Source – A Review. Current Journal: International Journal Applied Technology Research, 3(2), 120–134.
  5. Chaiya, C., & Reubroycharoen, P. (2013). Production of Bio Oil from Para Rubber Seed Using Pyrolysis Process. Energy Procedia, 34, 905–911.
  6. Direktorat Jenderal Perkebunan. (2018). Statistik Perkebunan Indonesia Komoditas Karet 2017—2019. Retrieved from
  7. Hassan, S. N. A. M., Ishak, M. A. M., Ismail, K., Ali, S. N., & Yusop, M. F. (2014). Comparison Study of Rubber Seed Shell and Kernel (Hevea Brasiliensis) as Raw Material for Bio-oil Production. Energy Procedia, 52, 610–617.
  8. Hermansson, S., Lind, F., & Thunman, H. (2011). On-line monitoring of fuel moisture-content in biomass-fired furnaces by measuring relative humidity of the flue gases. Chemical Engineering Research and Design, 89(11), 2470–2476.
  9. Hermiati, E. (2019). Pengembangan Teknologi Konversi Biomassa Menjadi Bioetanol dan Bioproduk Sebagai Subtitusi Produk Berbahan Baku Fosil. Lembaga Ilmu Pengetahuan Indonesia.
  10. Junaidi, J. (2022). The Ancillary Products Of Rubber (Hevea Brasiliensis Muell. Arg.): Potential Resources To Enhance Sustainability. Agricultural Socio-Economics Journal, 22(3), 169.
  11. Maher, K. D., & Bressler, D. C. (2007). Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresource Technology, 98(12), 2351–2368.
  12. Nazaruidin, & Paimin, F., B. (2006). Karet Budi Daya & Pengolahan Strategi Pemasaran. Penebar Swadaya.
  13. Özyuğuran, A., Yaman, S., & Küçükbayrak, S. (2018). Prediction of calorific value of biomass based on elemental analysis. International Advanced Researches and Engineering Journal, 02(03).
  14. Pizzi, A., Duca, D., Rossini, G., Fabrizi, S., & Toscano, G. (2020). Biofuel, Bioenergy and Feed Valorization of By-Products and Residues from Hevea brasiliensis Cultivation to Enhance Sustainability. Resources, 9(9), 114.
  15. Pulungan, A., Kembaren, A., Nurfajriani, N., Syuhada, F., Sihombing, J., Yusuf, M., & Rahayu, R. (2021). Biodiesel Production from Rubber Seed Oil UsingNatural Zeolite Supported Metal Oxide Catalysts. Polish Journal of Environmental Studies.
  16. Putri, D. A. K., Sulhadi, S., & Darsono, T. (2019). Analysis of the Results of the Reduction of Cyanide Acid Content in Hevea brasiliensis Seeds. Journal of Natural Sciences and Mathematics Research, 5(1), 20–23.
  17. Ram, M., & Mondal, M. K. (2022). Chapter 13—Biomass gasification: A step toward cleaner fuel and chemicals. In B. Gurunathan, R. Sahadevan, & Z. A. Zakaria (Eds.), Biofuels and Bioenergy (pp. 253–276). Elsevier.
  18. Raveendran, K., & Ganesh, A. (1996). Heating value of biomass and biomass pyrolysis products. Fuel, 75(15), 1715–1720.
  19. Sasmal, S., Goud, V. V., & Mohanty, K. (2012). Characterization of biomasses available in the region of North-East India for production of biofuels. Biomass and Bioenergy, 45, 212–220.
  20. Setyawardhani, D. A., Distantina, S., Henfiana, H., & Dewi, A. S. (2010). Pembuatan Biodiesel Dari Asam Lemak Jenuh Minyak Biji Karet. Seminar Rekayasa Kimia Dan Proses 2010.
  21. Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89(5), 913–933.
  22. Widayat, W., & Suherman, S. (2012). Biodiesel Production from Rubber Seed Oil via Esterification Process. International Journal of Renewable Energy Development, 1(2), 57–60.
  23. Wulandari, D. (2022). Biofuel Dari Tandan Kosong Kelapa Sawit (Tkks) Melalui Proses Thermal Cracking Adsorbsi Dan Distilasi [Thesis]. Politeknik Negeri Sriwijaya.