Nitrogen Fertilizers and Plant Spacing in Organic Rice Cultivation: A Review

##plugins.themes.academic_pro.article.main##

Erythrina Erythrina
Gagad Restu Pratiwi
Nurwulan Agustiani
Arinal Haq Izzawati Nurrahma

Abstract

Organic rice cultivation is one of the technologies developed in Indonesia around two decades ago, but it is not growing as expected. Indeed, organic rice production is considered less effective than conventional farming. This review article explores the role of agronomic factors in organic rice cultivation related to organic nutrient availability and plant spacing. The proposed alternative solutions for using organic inputs to improve soil fertility and increase crop yields are also discussed. The effectiveness of organic fertilizers to chemical fertilizers based on the Rice Agro-advisory Service shows that organic rice has lower yields than conventional farming. The yield reduction ranges between 0.5 and 2.2 t ha−1 or around 9 to 43%, depending on organic amendments and site characteristics. It is also proven that applying high-nitrogen nutrients from organic fertilizers does not increase rice production. Application of nitrogen fertilizers in the right amount and at the correct plant stage  is more essential because it affects the yield component of rice plants. Narrower plant spacing in transplanted organic rice results in higher productivity. An increase in plant population higher than 25 hills m−2 no longer significantly increases rice yields. Among the agronomic factors that affect organic rice cultivation are the diversity of organic amendment in nutrient mineralization, especially nitrogen, according to plant needs, and narrow plant spacing that allows lesser weeds to grow among crop plants. These two agronomic factors need to be considered and applied by farmers to get the optimum growth and yield of organic rice cultivation.

##plugins.themes.academic_pro.article.details##

Author Biographies

Gagad Restu Pratiwi, National Research and Innovation Agency

Research Center for Food Crops

Nurwulan Agustiani, National Research and Innovation Agency

Research Center for Food Crops

Arinal Haq Izzawati Nurrahma, National Research and Innovation Agency

Research Center for Food Crops

How to Cite
Erythrina, E., Pratiwi, G. R. ., Agustiani, N. ., & Nurrahma, A. H. I. . (2023). Nitrogen Fertilizers and Plant Spacing in Organic Rice Cultivation: A Review. Journal of Applied Agricultural Science and Technology, 7(3), 314-328. https://doi.org/10.55043/jaast.v7i3.143

References

  1. Agus, F., Andrade, J.F., Edreira, J.I.R., Deng, N., Purwantomo, D.K.G., Agustiani, N., Aristya, V.E., Batubara, S.F., Herniwati. Hosang, E.Y., Krisnadi, L.Y., Makka, A., Samijan, Cenacchi, N., Wiebe, K., & Grassini, P. (2019). Yield gaps in intensive rice-maize cropping sequences in the humid tropics of Indonesia. Field Crops Res., 237, 12–22. https://doi.org/10.1016/j.fcr.2019.04.006
  2. Al-Amri, S. M. (2021). Application of bio-fertilizers for enhancing growth and yield of common bean plants grown under water stress conditions. Saudi Journal of Biological Sciences, 28(7), 3901-3908. https://doi.org/10.1016/j.sjbs.2021.03.064
  3. Alvarez, R. (2022). Comparing productivity of organic and conventional farming systems: a quantitative review. Archives of Agronomy and Soil Science, 68(14), 1947-1958. https://doi.org/10.1080/03650340.2021.1946040
  4. Arunrat, N., Sereenonchai, S., Chaowiwat, W., Wang, C., & Hatano, R. (2022). Carbon, nitrogen and water footprints of organic rice and conventional rice production over 4 years of cultivation: A case study in the Lower North of Thailand. Agronomy, 12(2), 380. https://doi.org/10.3390/agronomy12020380
  5. Atman, A., Bakrie, B., & Indrasti, R. (2018). Effect of Cow Manure Dosages as Organic Fertilizer on the Productivity of Organic Rice in West Sumatra, Indonesia. International Journal of Environment, Agriculture and Biotechnology, 3(2), 506-511. https://doi.org/10.22161/ijeab/3.2.25
  6. Ballini, E., Nguyen, T. T., & Morel, J. B. (2013). Diversity and genetics of nitrogen-induced susceptibility to the blast fungus in rice and wheat. Rice, 6, 32–37. https://doi.org/10.1186/1939-8433-6-32
  7. Blouin, M., Barrere, J., Meyer, N., Lartigue, S., Barot, S., & Mathieu, J. (2019). Vermicompost significantly affects plant growth. A meta-analysis. Agronomy for Sustainable Development, 39, 1-15. https://doi.org/10.1007/s13593-019-0579-x
  8. Buresh, R. J., Zaini, Z., Syam, M., Kartaatmadja, S., Suyamto, R., Torre, C. J., Sinohin, P.J., Girsang, S. S, Thalib, A., Abidin, Z., Susanto, B., Hatta, M., Haskarini, D., Budiono, Nurhayati, R., Zairin, M., Sembiring, H., Mejaya, M. D., & Tolentino, V. B. J. (2012). Nutrient manager for rice: a mobile phone and internet application increases rice yield and profit in rice farming. International Rice Seminar, 11-12 July, Indonesian Center for Rice Research, Sukamandi, West Java, Indonesia.
  9. Buresh, R. J., Castillo, R. L., Torre, J. C. D., Laureles, E. V., Samson, M. I., Sinohin, P. J.& Guerra, M. (2019). Site-specific nutrient management for rice in the Philippines: Calculation of field-specific fertilizer requirements by Rice Crop Manager. Field Crops Research, 239, 56–70. https://doi.org/10.1016/j.fcr.2019.05.013
  10. Cassman, K. G., & Dobermann, A. (2022). Nitrogen and the future of agriculture: 20 years on. Ambio, 51(1), 17-24. https://doi.org/10.1007/s13280-021-01526-w
  11. Central Bureau of Statistics Indonesia [CBS]. (2020, January 2023). Statistical Yearbook of Indonesia 2020. Jakarta, Indonesia, p. 790. ISSN 0126-2912. https://www.bps.go.id/publication.html
  12. Chapagain, T., & Yamaji, E. (2010). The effects of irrigation method, age of seedling and spacing on crop performance, productivity and water-wise rice production in Japan. Paddy and Water Environment, 8, 81–90. https://doi.org/10.1007/s10333-009-0187-5
  13. Chew, K. W., Chia, S. R., Yen, H. W., Nomanbhay, S., Ho, Y. C., & Show, P. L. (2019). Transformation of biomass waste into sustainable organic fertilizers. Sustainability, 11(8), 2266. https://doi.org/10.3390/su11082266
  14. Chiang, P. N., Tong, O. Y., Chiou, C. S., Lin, Y. A., Wang, M. K., & Liu, C. C. (2016). Reclamation of zinc-contaminated soil using a dissolved organic carbon solution prepared using liquid fertilizer from food-waste composting. Journal of hazardous materials, 301, 100-105. https://doi.org/10.1016/j.jhazmat.2015.08.015
  15. Dass, A., Chandra, S., Choudhary, A. K., Singh, G., & S. Sudhishri. (2016) Influence of field re-ponding pattern and plant spacing on rice root–shoot characteristics, yield, and water productivity of two modern cultivars under SRI management in Indian Mollisols. Paddy and Water Environment, 14, 45–59. https://doi.org/10.1007/s10333-015-0477-z
  16. Dobermann, A., Witt, C., Dawe, D., Abdulrachman, S., Gines, H. C., Nagarajan, R., Satawathananont, S., Son, T. T., Tan, P. S., Wang, G. H., Chien, N. V., Thoa, V. T. K., Phung, C. V., Stalin, P., Muthukrishnan, P., Ravi, V., Babu, M., Chatuporn, S., Sookthongsa, J., Sun, Q., & Adviento, M. A. A. (2002). Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Research, 74(1), 37-66. https://doi.org/10.1016/S0378-4290(01)00197-6
  17. Dunn, B. W., Dunn, T. S., Mitchell, J. H., & Brinkhoff, J. (2020). Effects of plant population and row spacing on grain yield of aerial-sown and drill-sown rice. Crop and Pasture Science, 71(3), 219-228. https://doi.org/10.1071/CP19421
  18. Erythrina, E., Anshori, A., Bora, C. Y., Dewi, D. O., Lestari, M. S., Mustaha, M. A., Ramija, K. E., Rauf, A.W., Mikasari,W., Surdianto, Y., Suriadi, A., Purnamayani, R., Darwis, V., & Syahbuddin, H. (2021). Assessing Opportunities to Increase Yield and Profit in Rainfed Lowland Rice Systems in Indonesia. Agronomy, 11(4), 777. https://doi.org/10.3390/agronomy11040777
  19. Fageria, N. K. (2007). Yield physiology of rice. Journal of plant nutrition, 30(6), 843-879. https://doi.org/10.1080/15226510701374831
  20. Farmia, A. (2009). Development of organic rice farming in a rural area, Bantul regency, Yogyakarta special region province, Indonesia. Journal of Developments in Sustainable Agriculture, 3(2), 135-148. https://doi.org/10.11178/jdsa.3.135
  21. Fatchiyah, F., Sari, D. R. T., Safitri, A., & Cairns, J. R. (2020). Phytochemical compound and nutritional value in black rice from Java Island, Indonesia. Systematic Review in Pharmacy, 11(7), 414-421. https://www.researchgate.net/profile/Fatchiyah-Fatchiyah-2/publication/344085896_Phytochemical_Compound_and_Nutritional_Value_in_Black_Rice_from_Java_Island_Indonesia/links/6067ffbda6fdccad3f699427/Phytochemical-Compound-and-Nutritional-Value-in-Black-Rice-from-Java-Island-Indonesia.pdf
  22. Frasetya, B., Harisman, K., Sudrajat, D., & Subandi, M. (2019). Utilization of rice husk silicate extract to improve the productivity of paddy Ciherang cultivar. Bulgarian Journal of Agricultural Science, 25(3), 499-505. https://agrojournal.org/25/03-11.pdf
  23. Gong, X., Zhang, Z., & Wang, H. (2021). Effects of Gleditsia sinensis pod powder, coconut shell biochar and rice husk biochar as additives on bacterial communities and compost quality during vermicomposting of pig manure and wheat straw. Journal of Environmental Management, 295, 113136. https://doi.org/10.1016/j.jenvman.2021.113136
  24. Haryati, N., & Adi, S. M. (2019). Development strategy of rice organic farming sustainability towards food safety: a case study in Kediri Indonesia. Russian Journal of Agricultural and Socio-Economic Sciences, 85(1). https://doi.org/10.18551/rjoas.2019-01.29
  25. Hazra, K. K., Swain, D. K., Bohra, A., Singh, S. S., Kumar, N., & Nath, C. P. (2018). Organic rice: Potential production strategies, challenges and prospects. Organic agriculture, 8(1), 39-56. https://doi.org/10.1007/s13165-016-0172-4
  26. He, X., Qiao, Y., Liang, L., Knudsen, M. T., & Martin, F. (2018). Environmental life cycle assessment of long-term organic rice production in subtropical China. Journal of Cleaner Production, 176, 880-888. https://doi.org/10.1016/j.jclepro.2017.12.045
  27. Hermawan, A., Sulistyani, D. P., & Bakri. (2021). Performance of paddy crop in swampland under organic pellet fertilization from Azolla and vermicompost. Jurnal Ilmiah Pertanian, 17(2), 60-66. https://doi.org/10.31849/jip.v17i2.5807
  28. IRRI. (1997). Rice Production Manual. Rice Knowledge Bank. International Rice Research Institute. Retrieved from http://www.knowledgebank.irri.org/training/fact-sheets/crop-establishment/manual-transplanting
  29. Kahar, P., Rachmadona, N., Pangestu, R., Palar, R., Adi, D. T. N, Juanssilfero, A. B., Yopi, Manurung, I., Hama, S., & Ogino, C. (2022). An integrated biorefinery strategy for the utilization of palm-oil wastes. Bioresource Technology, 344, 126266. https://doi.org/10.1016/j.biortech.2021.126266
  30. Kashkool, H. R., Radhi, N. J., & Hassan, W. F. (2020). Effect of plant spacing system and soil amendment in growth and yield of rice plants (Oryza sativa L.). Plant Archives, 20(1), 2710-2714. e-ISSN:2581-6063. https://www.researchgate.net/profile/Haider-Kshkooll/publication/340720937_EFFECT_OF_PLANT_SPACING_SYSTEM_AND_SOIL_AMENDMENT_IN_GROWTH_AND_YIELD_OF_RICE_PLANTS_ORYZA_SATIVA_L/links/5e9a105a4585150839e4002c/EFFECT-OF-PLANT-SPACING-SYSTEM-AND-SOIL-AMENDMENT-IN-GROWTH-AND-YIELD-OF-RICE-PLANTS-ORYZA-SATIVA-L.pdf
  31. Khoshnevisan, B., Duan, N., Tsapekos, P., Awasthi, M. K., Liu, Z., Mohammadi, A., Angelidaki, I., Daniel-Tsang, C. W., Zhang, Z., Pan, J., Ma, L., Aghbashlo, M., Tabatabaei, M., & Liu, H. (2021). A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives. Renewable and Sustainable Energy Reviews, 135, 110033. https://doi.org/10.1016/j.rser.2020.110033
  32. Komatsuzaki, M., & Syuaib, M. F. (2010). Comparison of the farming system and carbon sequestration between conventional and organic rice production in West Java, Indonesia. Sustainability, 2(3), 833-843. https://doi.org/10.3390/su2030833
  33. Lal, R. (2020). Soil organic matter and water retention. Agronomy Journal, 112(5), 3265-3277. https://doi.org/10.1002/agj2.20282
  34. Latif, M. A., Islam, M. R., Ali, M. Y., & Saleque, M. A. (2005). Validation of the system of rice intensification (SRI) in Bangladesh. Field Crops Research, 93(2-3), 281-292. https://doi.org/10.1016/j.fcr.2004.10.005
  35. Liu, K., Li, Y., Han, T., Yu, X., Ye, H., Hu, H., & Hu, Z. (2019). Evaluation of grain yield based on digital images of rice canopy. Plant methods, 15(1), 1-11. https://doi.org/10.1186/s13007-019-0416-x
  36. Meemken, E. M., & Qaim, M. (2018). Organic agriculture, food security, and the environment. Annual Review of Resource Economics, 10, 39-63. https://doi.org/10.1146/annurev-resource-100517-023252
  37. Ministry of Health. (2018). The Indonesian Food Composition data (DKPI) Working Group 2018. the Ministry of Health of the Republic of Indonesia. Retrieved from https://www.panganku.org/en-EN/cari_nutrisi
  38. Mondal, D., Kantamraju, P., Jha, S., Sundarrao, G. S., Bhowmik, A., Chakdar, H., Mandal, S., Sahana, N., Roy, B., Bhattacharya, P. M., Chowdhury, A. K, & Choudhury, A. (2021). Evaluation of indigenous aromatic rice cultivars from sub-Himalayan Terai region of India for nutritional attributes and blast resistance. Scientific reports, 11(1), 4786. https://doi.org/10.1038/s41598-021-83921-7
  39. Poh, P. E., Wu, T. Y., Lam, W. H., Poon, W. C., & Lim, C. S. (2020). Oil Palm Plantation Wastes. In. Poh, P. E., Wu, T. Y., Lam, W. H., Poon, W. C., & Lim, C. S. (Eds.). Waste Management in the Palm Oil Industry. Plantation and Milling Processes. (pp. 5-20). Springer, Cham. https://doi.org/10.1007/978-3-030-39550-6_2
  40. Pujiwati, H., Setyowati, N., Wahyuni, D. D., & Muktamar, Z. (2021). Growth and Yield of Soybean on Various Types and Concentrations of Liquid Organic Fertilizer in Ultisols. Journal of Applied Agricultural Science and Technology, 5(2), 74-83. https://doi.org/10.32530/jaast.v5i2.28
  41. Röös, E., Mie, A., Wivstad, M., Salomon, E., Johansson, B., Gunnarsson, S., Wallenbeck, A., Hoffmann, R., Nilsson, U., Sundberg, C., & Watson, C. A. (2018). Risks and opportunities of increasing yields in organic farming. A review. Agronomy for sustainable development, 38, 1-21. https://doi.org/10.1007/s13593-018-0489-3
  42. Saber, Z., van Zelm, R., Pirdashti, H., Schipper, A. M., Esmaeili, M., Motevali, A., Nabavi-Pelesaraei, A., & Huijbregts, M. A. J. (2021). Understanding farm-level differences in environmental impact and eco-efficiency: The case of rice production in Iran. Sustainable Production and Consumption, 27, 1021-1029. https://doi.org/10.1016/j.spc.2021.02.033
  43. Sasmita, P., & Nugraha, Y. (2020). Rice Breeding Strategy for Climate Resilience and Value Addition in Indonesia. In. Lestari, P., Mulya, K., Utami, D. W. Satyawan, D., Supriadi, Mastur (eds.). Strategies and Technologies for the Utilization and Improvement of Rice. (pp. 67-82). IAARD PRESS. ISBN: 978-602-344-309-3.
  44. Schlatter, B., Trávníček, J., Meier, C., & Willer, H. (2022). Current Statistics on Organic Agriculture Worldwide: Area, Operators and Market. In. Willer, H., Trávníček, J., Meier, C., & Schlatter, B (Eds.). The World of Organic Agriculture Statistics and Emerging Trends 2022. (pp.34-87). Research Institute of Organic Agriculture FiBL, Frick, and IFOAM. http://www.organic-world.net/yearbook/yearbook-2022.html
  45. Setiawati, M. R., Prayoga, M. K., Stöber, S., Adinata, K., & Simarmata, T. (2020). Performance of rice paddy varieties under various organic soil fertility strategies. Open Agriculture, 5(1), 509-515. https://doi.org/10.1515/opag-2020-0050
  46. Sharma, S., Rout, K. K., Khanda, C. M., Tripathi, R., Shahid, M., Nayak, A., Satpathy, S., Banik, N. C., Iftikar, W., Parida, N., Kumar, V., Mishra, A., Castillo, R. L., Velasco, T., & Buresh, R. J. (2019). Field-specific nutrient management using Rice Crop Manager decision support tool in Odisha, India. Field Crops Research, 241, 1-13. https://doi.org/10.1016/j.fcr.2019.107578
  47. Sinha, D., & Tandon, P. K. (2020). Biological Interventions Towards Management of Essential Elements in Crop Plants. In. Mishra, K., Tandon, P. K., Srivastava, S. (eds). Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants. (pp. 209-258). Springer, Singapore. https://doi.org/10.1007/978-981-15-8636-1_9
  48. Soebandiono, S., Muhibuddin, A., Purwanto, E., & Purnomo, D. (2021, February). Effect of indigenous organic fertilizer on the growth and yield of paddy. In IOP Conference Series: Earth and Environmental Science, 653(1), 012058. IOP Publishing. https://doi.org/10.1088/1755-1315/653/1/012058
  49. Tang, S., Zhang, H., Liu, W., Dou, Z., Zhou, Q., Chen, W., Wang, S. & Ding, Y. (2019). Nitrogen fertilizer at heading stage effectively compensates for the deterioration of rice quality by affecting the starch-related properties under elevated temperatures. Food Chemistry, 277, 455-462. https://doi.org/10.1016/j.foodchem.2018.10.137
  50. Thakur, A. K., Rath, S., Roychowdhury, S., & Uphoff, N. (2010). Comparative performance of rice with system of rice intensification (SRI) and conventional management using different plant spacings. Journal of Agronomy and Crop Science, 196(2), 146-159. https://doi.org/10.1111/j.1439-037X.2009.00406.x
  51. Tian, G., Gao, L., Kong, Y., Hu, X., Xie, K., Zhang, R., Ling, N., Shen, Q., & Guo, S. (2017). Improving rice population productivity by reducing nitrogen rate and increasing plant density. PLoS One, 12(8), e0182310. https://doi.org/10.1371/journal.pone.0182310
  52. Timsina, J. (2018). Can organic sources of nutrients increase crop yields to meet global food demand?. Agronomy, 8(10), 214. https://doi:10.3390/agronomy8100214.
  53. Tulak, A., Inrianti, I., Maulidiyah, M., & Nurdin, M. (2022). The Impact of Using a Mixture of Organic Fertilizers (Compost And Liquid Organic) and Plastic Mulch, on the Development of Cayenne Pepper Plants. Journal of Applied Agricultural Science and Technology, 6(2), 98-106. https://doi.org/10.55043/jaast.v6i2.60
  54. Utami, S. N. H., Abduh, A. M., Hanudin, E., & Purwanto, B. H. (2020). Study on the NPK uptake and growth of rice under two different cropping systems with different doses of organic fertilizer in the Imogiri Subdistrict, Yogyakarta Province, Indonesia. Sarhad Journal of Agriculture, 36(4),1190-1202. http://dx.doi.org/10.17582/journal.sja/2020/36.4.1190.1202
  55. Witt, C., Buresh, R.J., Peng, S., Balasubramanian, V., & Dobermann, A. (2007). Nutrient management. In. Fairhurst, T., Witt, C., Buresh, R. J., Dobermann, A. (Eds.). Rice: A Practical Guide to Nutrient Management. (pp. 1–45). International Rice Research Institute (IRRI), Los Baños, Philippines and International Plant Nutrition Institute (IPNI) and International Potash Institute (IPI), Singapore. http://books.irri.org/getpdf.htm?book=97898179494
  56. Xing, T., Yun, S., Li, B., Wang, K., Chen, J., Jia, B., Ke, T., & An, J. (2021). Coconut-shell-derived bio-based carbon enhanced microbial electrolysis cells for upgrading anaerobic co-digestion of cow manure and aloe peel waste. Bioresource Technology, 338, 125520. https://doi.org/10.1016/j.biortech.2021.125520
  57. Yasmin, R., Paul, S. K., Paul, S. C., & Salim, M. (2018). Effect of plant spacing and integrated nutrient management on the yield performance of Binadhan-14. Archives of Agriculture and Environmental Science, 3(4), 354-359. https://dx.doi.org/10.26832/24566632.2018.030404