Effect of Stevia and Erythritol on Sensory, Microbiological, and Physicochemical Characteristics of Black Glutinous Rice Cookies

##plugins.themes.academic_pro.article.main##

Eko Yuliastuti Endah Sulistyawati
Rina Rismaya
Athiefah Fauziyyah
Mutiara Ulfah

Abstract

Cookie is a popular and well-liked food but is high in calories and low in fiber. Replacing sugar by artificial sweeteners in cookies is expected to reduce the calorific value of cookies. This study aimed to evaluate the effect of adding artificial sweeteners on the physical, sensory, microbiological characteristics, and functional benefits of cookies. A completely randomized design with sweeteners (stevia and erythritol) and concentrations (0.2%, 0.4%, and 0.5%) was used. The results showed that stevia and erythritol had significantly affected all test parameters, except in the mold/yeast parameters of cookies. The adding of stevia and erythritol significantly decreased L*, a*, b*, hedonic scores, caloric values, dietary fiber contents, total microbial values but significantly increased hardness and antioxidant capacities (IC50) of final cookies. All sensory ratings of the sucrose and formulated cookies were >3 points, which demonstrated that stevia and erythritol can be sugar replacers that can reduce calorie cookies. The findings can guide in the reformulation of low-calorie, high-fiber, and non-gluten cookies.

##plugins.themes.academic_pro.article.details##

Author Biographies

Eko Yuliastuti Endah Sulistyawati, Universitas Terbuka

Food Technology Study Program, Science and Technology Faculty

Rina Rismaya, Universitas Terbuka

Food Technology Study Program, Science and Technology Faculty

Athiefah Fauziyyah, Universitas Terbuka

Food Technology Study Program, Science and Technology Faculty

Mutiara Ulfah, Universitas Terbuka

Food Technology Study Program, Science and Technology Faculty

How to Cite
1.
Sulistyawati EYE, Rismaya R, Fauziyyah A, Ulfah M. Effect of Stevia and Erythritol on Sensory, Microbiological, and Physicochemical Characteristics of Black Glutinous Rice Cookies. J. appl. agricultural sci. technol. [Internet]. 2024Aug.27 [cited 2024Oct.5];8(3):331-46. Available from: http://jaast.org/index.php/jaast/article/view/204

References

  1. Garrido-Romero M, Montilla A, Moreno FJ. Dietary carbohydrates: a trade-off between appealing organoleptic and physicochemical properties and ability to control glucose release and weight management. Curr Opin Food Sci 2023;49:100976. https://doi.org/10.1016/j.cofs.2022.100976.
  2. Sandoval-Peraza M, Chel-Guerrero L, Betancur-Ancona D. Some physicochemical and functional properties of the rich fibrous fraction of hardened beans (Phaseolus vulgaris L.) and its addition in the formulation of beverages. Int J Gastron Food Sci 2021;26:100440. https://doi.org/10.1016/j.ijgfs.2021.100440.
  3. Arshad S, Rehman T, Saif S, Rajoka MSR, Ranjha MMAN, Hassoun A, et al. Replacement of refined sugar by natural sweeteners: focus on potential health benefits. Heliyon 2022;8:1–12. https://doi.org/10.1016/j.heliyon.2022.e10711.
  4. Aggarwal D, Sabikhi L, Sathish Kumar MH. Formulation of reduced-calorie biscuits using artificial sweeteners and fat replacer with dairy-multigrain approach. NFS Journal 2016;2:1–7. https://doi.org/10.1016/j.nfs.2015.10.001.
  5. Castro-Muñoz R, Correa-Delgado M, Córdova-Almeida R, Lara-Nava D, Chávez-Muñoz M, Velásquez-Chávez VF, et al. Natural sweeteners: Sources, extraction and current uses in foods and food industries. Food Chem 2022;370. https://doi.org/10.1016/j.foodchem.2021.130991.
  6. Valle M, St-Pierre P, Pilon G, Marette A. Differential effects of chronic ingestion of refined sugars versus natural sweeteners on insulin resistance and hepatic steatosis in a rat model of diet-induced obesity. Nutrients 2020;12:1–14. https://doi.org/10.3390/nu12082292.
  7. Giri NA, Sakhale BK. Development of sweet potato flour based high protein and low calorie gluten free cookies. Current Research in Nutrition and Food Science 2019;7:427–35. https://doi.org/10.12944/CRNFSJ.7.2.12.
  8. Salazar VAG, Encalada SV, Cruz AC, Campos MRS. Stevia rebaudiana: A sweetener and potential bioactive ingredient in the development of functional cookies. J Funct Foods 2018;44:183–90. https://doi.org/10.1016/j.jff.2018.03.007.
  9. Pranyusha D, Priya MH, Tanzeem S, Radhamma G, Meda P. Development and standardization of stevia (Stevia rebaudiana) incorporated multigrain cookies. Int J Chem Stud 2020;8:750–2. https://doi.org/10.22271/chemi.2020.v8.i5k.10387.
  10. Torra M, Belorio M, Ayuso M, Carocho M, Ferreira ICFR, Barros L, et al. Chickpea and chestnut flours as non-gluten alternatives in cookies. Foods 2021;10:1–13. https://doi.org/10.3390/foods10050911.
  11. Luh N, Sherly P, Nugrahani R, Pertanian TH, Pertanian F, Wathan UN. Kualitas sensoris kue kering dari tepung buncis (Phaseolus Vulgaris L .) dan mocaf sebagai cemilan non-gluten. Jurnal Agrotek UMMAT 2024;11:81–92.
  12. Moviana Y, Rastina D, Fauziyah RN, Rosmana D, Isdiany N, Ningrum D. Cookies Oat Tape Ketan Hitam Sumber Antosianin Dan Serat Untuk Alternatif Makanan Selingan Bagi Obesitas. Jurnal Riset Kesehatan Poltekkes Depkes Bandung 2022;14:181–90. https://doi.org/10.34011/juriskesbdg.v14i1.2097.
  13. Hu K, Chen D, Sun Z. Structures, physicochemical properties, and hypoglycemic activities of soluble dietary fibers from white and black glutinous rice bran: A comparative study. Food Research International 2022;159:111423. https://doi.org/10.1016/j.foodres.2022.111423.
  14. Vatankhah M, Garavand F, Elhamirad A, Yaghbani M. Influence of sugar replacement by stevioside on physicochemical and sensory properties of biscuit. Quality Assurance and Safety of Crops and Foods 2015;7:393–400. https://doi.org/10.3920/QAS2014.0396.
  15. Nadolsky KZ. COUNTERPOINT: artificial sweeteners for obesity—better than sugary alternatives; potentially a solution. Endocrine Practice 2021;27:1056–61. https://doi.org/10.1016/j.eprac.2021.06.013.
  16. Woodbury TJ, Lust AL, Mauer LJ. The effects of commercially available sweeteners (sucrose and sucrose replacers) on wheat starch gelatinization and pasting, and cookie baking. J Food Sci 2021;86:687–98. https://doi.org/10.1111/1750-3841.15572.
  17. Garrido-Romero M, Montilla A, Moreno FJ. Dietary carbohydrates: a trade-off between appealing organoleptic and physicochemical properties and ability to control glucose release and weight management. Curr Opin Food Sci 2023;49:100976. https://doi.org/10.1016/j.cofs.2022.100976.
  18. Vigneshwari K, Manonmani K. Effect of Sugar Replacer (Stevia and Maltitol) on Quality Characteristics of Bread. Asian Journal Of Dairy and Food Research 2020;39:159–63.
  19. Singh P, Kashyap L. Sugar and Sugar Derivatives: Changing Consumer Preferences. 2020. https://doi.org/10.1007/978-981-15-6663-9.
  20. Lemus-Mondaca R, Vega-Gálvez A, Zura-Bravo L, Kong AH. Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chem 2012;132:1121–32. https://doi.org/10.1016/j.foodchem.2011.11.140.
  21. Fagundes MG, Smith Taillie L, Zancheta Ricardo C, Amaral Mais L, Bortoletto Martins AP, Duran AC. Prevalence of Low-Calorie Sweeteners and Related Front-of-Package Claims in the Brazilian Packaged Food Supply. J Acad Nutr Diet 2022;122:1296–304. https://doi.org/10.1016/j.jand.2021.12.009.
  22. Hashem MM, AbdelHamid RI, AbuelMaaty S, Elassal SS, ElDoliefy AEFA. Differential UGT76G1 and start codon-based characterization of six stevia germlines in Egypt. Biocatal Agric Biotechnol 2021;33. https://doi.org/10.1016/j.bcab.2021.101981.
  23. Naik V, Poyil T. Application of stevia ( Stevia rebaudiana Bertoni .) in food products. The Pharma Innovation Journal 2022;11:2056–60.
  24. Kulthe AA, Pawar VD, Kotecha PM, Chavan UD, Bansode VV. Development of high protein and low calorie cookies. J Food Sci Technol 2014;51:153–7. https://doi.org/10.1007/s13197-011-0465-2.
  25. Suez J, Cohen Y, Valdés-Mas R, Mor U, Dori-Bachash M, Federici S, et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell 2022;185:3307-3328.e19. https://doi.org/10.1016/j.cell.2022.07.016.
  26. Rice T, Zannini E, K. Arendt E, Coffey A. A review of polyols–biotechnological production, food applications, regulation, labeling and health effects. Crit Rev Food Sci Nutr 2020;60:2034–51. https://doi.org/10.1080/10408398.2019.1625859.
  27. Shimizu M, Miyawaki S, Kuroda T, Umeta M, Kawabe M, Watanabe K. Erythritol inhibits the growth of periodontal-disease-associated bacteria isolated from canine oral cavity. Heliyon 2022;8:e10224. https://doi.org/10.1016/j.heliyon.2022.e10224.
  28. Cannon ML, Merchant M, Kabat W, Unruh B, Ramones A. Inhibition of autism spectrum disorder associated bacteria and c. difficile by polyols. Edelweiss Applied Science and Technology 2020;4:33–6. https://doi.org/10.33805/2576-8484.173.
  29. Al-Dabbas MM, Al-Qudsi JM. Effect of partial replacement of sucrose with the artificial sweetener sucralose on the physico-chemical, sensory, microbial characteristics, and final cost saving of orange nectar. Int Food Res J 2012;19:679–83.
  30. Rana MS, Das PC, Yeasmin F, Islam MN. Effect of polydextrose and stevia on quality characteristics of low-calorie biscuits. Food Res 2020;4:2011–9. https://doi.org/10.26656/fr.2017.4(6).223.
  31. Yildiz E, Gocmen D. Use of almond flour and stevia in rice-based gluten-free cookie production. J Food Sci Technol 2021;58:940–51. https://doi.org/10.1007/s13197-020-04608-x.
  32. Gao X, Zhang W, Zhou G. Effects of glutinous rice flour on the physiochemical and sensory qualities of ground pork patties. Lwt 2014;58:135–41. https://doi.org/10.1016/j.lwt.2014.02.044.
  33. Lang GH, Kringel DH, Acunha T dos S, Ferreira CD, Dias ÁRG, Zavareze E da R, et al. Cake of brown, black and red rice: Influence of transglutaminase on technological properties, in vitro starch digestibility and phenolic compounds. Food Chem 2020;318:126480. https://doi.org/10.1016/j.foodchem.2020.126480.
  34. Li Y, Sun Y, Zhong M, Xie F, Wang H, Li L, et al. Digestibility, textural and sensory characteristics of cookies made from residues of enzyme-assisted aqueous extraction of soybeans. Sci Rep 2020;10:1–8. https://doi.org/10.1038/s41598-020-61179-9.
  35. Janowicz M, Ciurzyńska A, Karwacka M, Kowalska J, Galus S. Mathematical estimation of the energy, nutritional and health-promoting values of multi-layer freeze-dried vegetable snacks. Applied Sciences (Switzerland) 2022;12. https://doi.org/10.3390/app12136379.
  36. Kuchtová V, Kohajdová Z, Karovičová J, Lauková M. Physical, Textural and Sensory Properties of Cookies Incorporated with Grape Skin and Seed Preparations. Pol J Food Nutr Sci 2018;68:309–17. https://doi.org/10.2478/pjfns-2018-0004.
  37. Yazdi AG, Hojjatoleslamy M, Keramat J, Jahadi M, Amani E. The Evaluation of saccharose replacing by adding stevioside-maltodextrin mixture on the physicochemical and sensory properties of Naanberenji (an Iranian confectionary). Food Sci Nutr 2017;5:845–51. https://doi.org/10.1002/fsn3.463.
  38. Yoo S-S, Hong Y-J. Quality Characteristics and Antioxidant Activity of Cookies with Stevia Powder. Korean J Food Cookery Sci 2012;28.
  39. Gong S, Xu B, Gu X, Li W, Yu Y, Zhang W, et al. Study on the effects of sugar alcohols and Angelica keiskei flour on cookie quality, antioxidant, and nutrition. Cereal Chem 2020;97:714–22. https://doi.org/10.1002/cche.10287.
  40. Laguna L, Primo-Martín C, Salvador A, Sanz T. Inulin and erythritol as sucrose replacers in short-dough cookies: Sensory, fracture, and acoustic properties. J Food Sci 2013;78. https://doi.org/10.1111/1750-3841.12119.
  41. Hajas L, Benedek C, Csajbókné Csobod É, Juhász R. Development of Protein- and Fiber-Enriched, Sugar-Free Lentil Cookies: Impact of Whey Protein, Inulin, and Xylitol on Physical, Textural, and Sensory Characteristics. Foods 2022;11. https://doi.org/10.3390/foods11233819.
  42. Rao ES, Meena PL, Barwa MS. Development of sugar free cookies with novel biodegradable packaging film. Journal of Applied and Natural Science 2021;13:316–26. https://doi.org/10.31018/jans.v13i1.2532.
  43. Stone H. Example food: What are its sensory properties and why is that important? NPJ Sci Food 2018;2:2017–9. https://doi.org/10.1038/s41538-018-0019-3.
  44. Schiatti-Sisó IP, Quintana SE, García-Zapateiro LA. Stevia (Stevia rebaudiana) as a common sugar substitute and its application in food matrices: an updated review. J Food Sci Technol 2022. https://doi.org/10.1007/s13197-022-05396-2.
  45. Lima Ribeiro AP, Guimarães JS, Teixeira Lago AM, Cardoso de Angelis Pereira M, Ronaldo de Abreu L, Pinto SM. Oat bran and sweeteners in petit-suisse cheese: Technological and nutritional properties and consumer acceptance. Lwt 2021;146. https://doi.org/10.1016/j.lwt.2021.111318.
  46. Prada M, Saraiva M, Sério A, Coelho S, Godinho CA, Garrido M V. The Impact of Sugar-Related Claims on Perceived Healthfulness, Caloric Value and Expected Taste of Food Products. Food Qual Prefer 2021:166. https://doi.org/10.1016/j.foodqual.2021.104331.
  47. Winkelhausen E, Jovanovic-Malinovska R, Velickova E, Kuzmanova S. Sensory and Microbiological Quality of a Baked Product Containing Xylitol as an Alternative Sweetener. Int J Food Prop 2007;10:639–49. https://doi.org/10.1080/10942910601098031.
  48. Boling L, Cuevas DA, Grasis JA, Kang HS, Knowles B, Levi K, et al. Dietary prophage inducers and antimicrobials: toward landscaping the human gut microbiome. Gut Microbes 2020;11:721–34. https://doi.org/10.1080/19490976.2019.1701353.
  49. Deniņa I, Semjonovs P, Fomina A, Treimane R, Linde R. The influence of stevia glycosides on the growth of Lactobacillus reuteri strains. Lett Appl Microbiol 2014;58:278–84. https://doi.org/10.1111/lam.12187.
  50. Wang QP, Browman D, Herzog H, Gregory Neely G. Non-nutritive sweeteners possess a bacteriostatic effect and alter gut microbiota in mice. PLoS One 2018;13:1–13. https://doi.org/10.1371/journal.pone.0199080.
  51. Saini P, Islam M, Das R, Shekhar S, Sinha ASK, Prasad K. Wheat Bran as Potential Source of Dietary Fiber: Prospects and Challenges. Journal of Food Composition and Analysis 2022;116:105030. https://doi.org/10.1016/j.jfca.2022.105030.
  52. Yu M, Gao T, Liu Z, Diao X. Effects of dietary supplementation with high fiber (stevia residue) on the fecal flora of pregnant sows. Animals 2020;10:1–22. https://doi.org/10.3390/ani10122247.
  53. Permenkes. Angka Kecukupan yang Dianjurkan bagi Bangsa Indonesia. Jakarta: Menteri Kesehatan RI; 2013.
  54. Handa C, Goomer S, Siddhu A. Physicochemical properties and sensory evaluation of fructoligosaccharide enriched cookies. J Food Sci Technol 2012;49:192–9. https://doi.org/10.1007/s13197-011-0277-4.
  55. Jideani AIO, Silungwe H, Takalani T, Omolola AO, Udeh HO, Anyasi TA. Antioxidant-rich natural fruit and vegetable products and human health. Int J Food Prop 2021;24:41–67. https://doi.org/10.1080/10942912.2020.1866597.
  56. Nimal R, Selcuk O, Kurbanoglu S, Shah A, Siddiq M, Uslu B. Trends in electrochemical nanosensors for the analysis of antioxidants. TrAC - Trends in Analytical Chemistry 2022;153. https://doi.org/10.1016/j.trac.2022.116626.
  57. Peteliuk V, Rybchuk L, Bayliak M, Storey KB, Lushchak O. Natural sweetener stevia rebaudiana: Functionalities, health benefits and potential risks. EXCLI J 2021;20:1412–30. https://doi.org/10.17179/excli2021-4211.
  58. Shukla S, Mehta A, Mehta P, Bajpai VK. Antioxidant ability and total phenolic content of aqueous leaf extract of Stevia rebaudiana Bert. Experimental and Toxicologic Pathology 2012;64:807–11. https://doi.org/10.1016/j.etp.2011.02.002.
  59. De Cock P, Bechert CL. Erythritol. Functionality in noncaloric functional beverages. Pure and Applied Chemistry 2002;74:1281–9. https://doi.org/10.1351/pac200274071281.
  60. Chiriac AP, Ghilan A, Serban AM, Macsim AM, Bargan A, Doroftei F, et al. Preparation of an Antioxidant Assembly Based on a Copolymacrolactone Structure and Erythritol following an Eco-Friendly Strategy. Antioxidants 2022;11. https://doi.org/10.3390/antiox11122471.
  61. den Hartog GJM, Boots AW, Adam-Perrot A, Brouns F, Verkooijen IWCM, Weseler AR, et al. Erythritol is a sweet antioxidant. Nutrition 2010;26:449–58. https://doi.org/10.1016/j.nut.2009.05.004.
  62. Yokozawa T, Kim HY, Cho EJ. Erythritol attenuates the diabetic oxidative stress through modulating glucose metabolism and lipid peroxidation in streptozotocin-induced diabetic rats. J Agric Food Chem 2002;50:5485–9. https://doi.org/10.1021/jf020168z.
  63. Scrob T, Varodi SM, Vintilă GA, Casoni D, Cimpoiu C. Estimation of degradation kinetics of bioactive compounds in several lingonberry jams as affected by different sweeteners and storage conditions. Food Chem X 2022;16. https://doi.org/10.1016/j.fochx.2022.100471.
  64. Osilla E V, Safadi AO, Sharma S. Calories. StatPearls [Internet], StatPearls Publishing; 2021.