Analyzing the Performance of Multi Seeds Smart Dryer (MSSD) with Low Cost and Low Energy Consumption (LCEC)
##plugins.themes.academic_pro.article.main##
Abstract
Seeds drying technology is essential for ensuring the quality of agricultural products, particularly seeds. Although technological developments have resulted in more effective drying methods, challenges such as high energy consumption persist among small-scale farmers with limited resources. Therefore, this research aimed to analyze the performance of Multi Seeds Smart Dryer with Low Cost and Low Energy Consumption (MSSD-LCEC), a machine designed to solve the inadequacies of traditional seeds drying methods. The machine used low-energy components and environmentally friendly concepts to achieve sustainable seeds drying while remaining affordable for small-scale farmers. Using corn, peanuts, and soybeans as test materials, the performance of MSSD-LCEC was analyzed through the use of factors such as drying rate, energy consumption, temperature, humidity, and moisture content (MC). The results showed that the machine effectively dried seeds in acceptable MC levels, meeting quality standards for seeds certification. This research also discussed the economic benefits of MSSD-LCEC, highlighting the stable performance and efficient energy use. By optimizing the machine's operation and minimizing energy costs, small-scale farmers could enhance their profitability while contributing to environmental sustainability. In conclusion, further refinement of the control system had the potential to enhance both economic benefits and environmental sustainability in seeds processing applications.
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Chakraverty A, Mujumdar AS, Raghavan GSV, Ramaswamy HS. Handbook of Postharvest Technology Cereals, Fruits, Vegetables, Tea, and Spices. New York: MARCEL DEKKER, INC; 2003. https://doi.org/10.1201/9780203911310.ch23.
- Arsenoaia VN, Roșca GR, Cârlescu P, Băetu M, Rațu R, Veleșcu I, et al. Drying Process Modeling and Quality Assessments Regarding an Innovative Seed Dryer. Agriculture (Switzerland) 2023;13. https://doi.org/10.3390/agriculture13020328.
- Chojnacka K, Mikula K, Izydorczyk G, Skrzypczak D, Witek-Krowiak A, Moustakas K, et al. Improvements in drying technologies - Efficient solutions for cleaner production with higher energy efficiency and reduced emission. Journal of Cleaner Production 2021;320. https://doi.org/10.1016/j.jclepro.2021.128706.
- Jimoh KA, Hashim N, Shamsudin R, Man HC, Jahari M, Onwude DI. Recent Advances in the Drying Process of Grains. Food Engineering Reviews 2023;15:548–76. https://doi.org/10.1007/s12393-023-09333-7.
- Belwal T, Cravotto C, Prieto MA, Venskutonis PR, Daglia M, Devkota HP, et al. Effects of different drying techniques on the quality and bioactive compounds of plant-based products: a critical review on current trends. Drying Technology 2022;40:1539–61. https://doi.org/10.1080/07373937.2022.2068028.
- Hu D, Liu X, Qin Y, Yan J, Li R, Yang Q. The impact of different drying methods on the physical properties, bioactive components, antioxidant capacity, volatile components and industrial application of coffee peel. Food Chemistry: X 2023;19:100807. https://doi.org/10.1016/j.fochx.2023.100807.
- Ying T, Spang ES. Paddy Drying Technologies: A Review of Existing Literature on Energy Consumption. Processes 2024;12:532. https://doi.org/10.3390/pr12030532.
- Malhotra B. Global vegetable seeds market is increasingly fragmented and diversified. S&P Global Commodity Insights 2021. https://www.spglobal.com/commodityinsights/en/ci/research-analysis/global-vegetable-seeds-market.html (accessed October 25, 2023).
- Global Agricultural Information Network. Grain and Feed Annual - 2021. Jakarta: 2023.
- Qadir A, Suhartanto MR, Widajati E, Budiman C, Zamzami A, Rosyad A, et al. Commercial rice seed production and distribution in Indonesia. Heliyon 2024;10:e25110. https://doi.org/10.1016/j.heliyon.2024.e25110.
- Jittanit W, Srzednicki G, Driscoll R. Energy cost of seed drying. ASEAN Journal on Science and Technology for Development 2017;26:33–41. https://doi.org/10.29037/ajstd.302.
- Nwakuba NR, Asoegwu SN, Nwaigwe KN. Energy consumption of agricultural dryers: An overview. Agricultural Engineering International: CIGR Journal 2016;18:119–32.
- Urbano DG, Aquino A, Scrucca F. Energy Performance, Environmental Impacts and Costs of a Drying System: Life Cycle Analysis of Conventional and Heat Recovery Scenarios. Energies 2023;16. https://doi.org/10.3390/en16031523.
- Mishra N, Jain SK, Agrawal N, Jain NK, Wadhawan N, Panwar NL. Development of drying system by using internet of things for food quality monitoring and controlling. Energy Nexus 2023;11:100219. https://doi.org/10.1016/j.nexus.2023.100219.
- Abduh M. Indonesia Agricultural Transformation: How Far? Where Would It Go? vol. 7. 2023. https://doi.org/10.36574/jpp.v7i1.366.
- Juliatin N, Suharso P, Mutrofin. Farmer poverty in Wonosari, Penanggal Village, Lumajang Regency. IOP Conference Series: Earth and Environmental Science 2020;485. https://doi.org/10.1088/1755-1315/485/1/012074.
- Mihret YC, Delele MA, Hailemesikel ST. Design, development, and testing of rice-husk fueled mixed-flow rice dryer for small-scale rice producer farmers. Heliyon 2023;9:e18077. https://doi.org/10.1016/j.heliyon.2023.e18077.
- Agussabti A, Rahmaddiansyah R, Hamid AH, Zakaria Z, Munawar AA, Abu Bakar B. Farmers’ perspectives on the adoption of smart farming technology to support food farming in Aceh Province, Indonesia. Open Agriculture 2022;7:857–70. https://doi.org/10.1515/opag-2022-0145.
- Shammi S, Hossen MA, Al Mamun MR, Alam Soeb MJ. Temporal and spatial representation of temperature and moisture in drying chamber and its impact on vertical vacuum dehumidifying rice seed dryer performance. Journal of Agriculture and Food Research 2022;10:100424. https://doi.org/10.1016/j.jafr.2022.100424.
- Alam MS, Sarker MSH, Hasan SMK, Ahmed M, Wazed MA. Comparison on drying characteristic, efficiency, unit drying cost and quality of maize dried by a novel multi-crop mobile dryer, existing industrial dryer and sun drying method. Journal of Agriculture and Food Research 2023;14:100804. https://doi.org/10.1016/j.jafr.2023.100804.
- Menon A, Stojceska V, Tassou SA. A systematic review on the recent advances of the energy efficiency improvements in non-conventional food drying technologies. Trends in Food Science and Technology 2020;100:67–76. https://doi.org/10.1016/j.tifs.2020.03.014.
- Kushimov BA, Karimov KA, Mamadaliev KZ. Formulation and development of energy-saving technology for drying seeds of desert fodder plants. IOP Conference Series: Earth and Environmental Science 2021;937. https://doi.org/10.1088/1755-1315/937/3/032056.
- Çakmakçı R, Salık MA, Çakmakçı S. Assessment and Principles of Environmentally Sustainable Food and Agriculture Systems. Agriculture (Switzerland) 2023;13:1–27. https://doi.org/10.3390/agriculture13051073.
- Indarto I, Bahariawan A, Sujarwo MW, Pamungkas AIJ, Hakim FL. Pengering Aneka Biji Hemat Daya Tipe Horizontal. S00202307717 Tanggal, 2023.
- Indarto I, Pandunata P, Soekarno S, Hariyanto N, Bahariawan A, Pamungkas AIJ. Pengering Cerdas Untuk Aneka Biji. S00202210360 Tanggal, 2023. https://pdki-indonesia.dgip.go.id/detail/e2096671552417101a74a270ce972c45422d2efc8af340684ca29ddb201c20ff%3Fnomor=S00202210360?type=patent&keyword=pengering+cerdas
- Liu T. Digital-output relative humidity & temperature sensor/module DHT22. New York : Aosong Electronic, vol. 22, 2015, p. 1–10. https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf
- Arduino. Arduino MEGA 2560 Rev3 Features. Arduino MEGA 2560, Arduino® MEGA 2560 Rev3; 2022, p. 1–18. www.arduino.cc
- Hinotek. Grain Moisture Meter LDS-1G 2017. https://file.hinotek.com/tag-tp/manual/LDS-1G Intelligent Moisture Tester English Manaul.pdf
- Doran PM. Bioprocess engineering principles: Second edition. vol. 9780080917. 2nd ed. United Kingdom: Elsevier; 2012.
- Krzyzanowski FC, West SH, Neto JDBF. Drying peanut seed using air ambient temperature at low relative humidity. Revista Brasileira de Sementes 2006;28:1–5. https://doi.org/10.1590/S0101-31222006000300001.
- Guo HL, Chen Y, Xu W, Xu MT, Sun Y, Wang XC, et al. Assessment of Drying Kinetics, Textural and Aroma Attributes of Mentha haplocalyx Leaves during the Hot Air Thin-Layer Drying Process. Foods 2022;11. https://doi.org/10.3390/foods11060784.
- Paziuk V, Tokarchuk O, Vyshnevskiy V, Kupchuk I. Substantiation of The Energy Efficient Schedules of Drying Grain Seeds. Bulletin of the Transilvania University of Braşov 2021;14. https://doi.org/https://doi.org/10.31926/but.fwiafe.2021.14.63.2.13.
- Wahyuni A, Simarmata MM, Junairiah PLI, Koryati T, Zakia A, Andini SN, et al. Teknologi dan Produksi Benih. i. Medan: Yayasan Kita Menulis; 2021. https://medium.com/@arifwicaksanaa/pengertian-use-case-a7e576e1b6bf
- Direktorat Jenderal Tanaman Pangan Kementerian Pertanian. Petunjuk Pelaksanaan Kegiatan Serealia. Jakarta: Direktorat Jenderal Tanaman Pangan Kementerian Pertanian; 2019.
- PPID Balai Besar Pengembangan Pengujian Mutu Benih Tanaman Pangan dan Hortikultura KPRI. Kelebihan Dan Kelemahan Kadar Air dan Kemurnian Sebagai Instrumen Pengecekan Mutu Benih Bantuan Pemerintah. Kementerian Pertanian RI 2023. https://bbppmbtph-tanamanpangan-ppid.pertanian.go.id/index.php/news/view/1087 (accessed November 21, 2023).
- Purnamasari I, Meidinariasty A, Hadi RN. Prototype Alat Pengering Tray Dryer Ditinjau Dari Pengaruh Temperatur Dan Waktu Terhadap Proses Pengeringan Mie Kering. Jurnal Kinetika 2019;10:25–8.
- Vera Zambrano M, Dutta B, Mercer DG, MacLean HL, Touchie MF. Assessment of moisture content measurement methods of dried food products in small-scale operations in developing countries: A review. Trends Food Sci Technol 2019;88:484–96. https://doi.org/10.1016/j.tifs.2019.04.006.
- Krisnawati A, Adie MM. Ragam Karakter Morfologi Kulit Biji Beberapa Genotipe Plasma Nutfah Kedelai. Buletin Plasma Nutfah 2008;14:14. https://doi.org/10.21082/blpn.v14n1.2008.p14-18.