Effectiveness of Lettuce Seed Encapsulation Containing Trichoderma Sp. in Control of Damping-off Disease


Sarah Hikmah Marieska
Sri Wiyatiningsih
Herry Nirwanto


Utilization of the antagonist fungus Trichoderma sp. in suppressing damping-off disease caused by Rhizoctonia solani can be done in various ways. One of them is through coating the seeds or encapsulation. This study aims to determine the effectiveness of lettuce seeds encapsulation containing Trichoderma sp. in suppressing damping-off disease through storage time of up to 12 weeks. The results showed that the use of talc and kaolin as a material carrier in encapsulation with 1 week of storage had the highest germination rate of 96%, while the lowest germination was at 12 weeks of storage, which was only 0-5%. The use of talc carrier showed a low percentage of infected seedlings, starting from storage time of 0 to 8 weeks. At 8 weeks of storage, the provision of carrier material in the form of talc showed the lowest percentage of infected seedlings, which was 40% on the last day of observation and had the highest value of effectiveness in controlling Rhizoctonia solani damping-off disease, which was 60%. Thus, seed encapsulation using a talc carrier was the most effective in suppressing damping-off disease up to 8 weeks of storage


Author Biographies

Sarah Hikmah Marieska, Universitas Pembangunan Nasional

Department of Agriculture

Sri Wiyatiningsih, Universitas Pembangunan Nasional

Department of Agriculture

Herry Nirwanto, Universitas Pembangunan Nasional

Department of Agriculture

How to Cite
Marieska, S. H., Wiyatiningsih, S., & Nirwanto, H. (2022). Effectiveness of Lettuce Seed Encapsulation Containing Trichoderma Sp. in Control of Damping-off Disease . Journal of Applied Agricultural Science and Technology, 6(2), 120–128. https://doi.org/10.55043/jaast.v6i2.66


  1. Abbas, A., Jiang, D., & Fu, Y. (2017). Trichoderma spp. as antagonist of Rhizoctonia solani. J Plant Pathol Microbiol, 8(3), 1-9. https://doi.org/10.4172/2157-7471.1000402
  2. Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13(1), 1–10. https://doi.org/10.1186/1475-2859-13-66
  3. Bourguet, D., & Guillemaud, T. (2016). The Hidden and External Costs of Pesticide Use. In E. Lichtfouse (Ed.), Sustainable Agriculture Reviews: Volume 19 (pp. 35–120). Springer International Publishing. https://doi.org/10.1007/978-3-319-26777-7_2
  4. Contreras-Cornejo, H. A., Orozco-Granados, O., Ramírez-Ordorica, A., García-Juárez, P., López-Bucio, J., & Macías-Rodríguez, L. (2022). Light and mycelial injury influences the volatile and non-volatile metabolites and the biocontrol properties of Trichoderma atroviride. Rhizosphere, 22, 100511. https://doi.org/https://doi.org/10.1016/j.rhisph.2022.100511
  5. Gusnawaty, H. (2011). Model Matematik Epidemi Penyakit Rebah Semai Dengan Inokulasi Actinomycetes Dan Vam Pada Tanaman Kedelai Pada Dua Musim Tanam (Model Regresi Sederhana). Agriplus, 21(September), 201–207. https://adoc.pub/model-matematik-epidemi-penyakit-rebah-semai-dengan-inokulas.html
  6. Herawati, L., & Istifadah, N. (2019). The potential of Spent Substrate of Oyster (Pleurotus ostreatus) dan Shiitake (Lentinula edodes) Mushrooms to Control Damping-off Disease (Rhizoctonia solani) in Tomato. Cropsaver, 1(2), 93. https://doi.org/10.24198/cs.v1i2.20329
  7. Kangsopa, J., Hynes, R. K., & Siri, B. (2018). Lettuce seeds pelleting: A new bilayer matrix for lettuce (Lactuca sativa) seeds. Seed Science and Technology, 46(3), 521–531.
  8. Laila, A. F., Suryaminarsih, P., & J, K. S. M. (2016). PENYALUTAN BENIH TOMAT DENGAN AGENS HAYATI Trichoderma Sp. Dan Actinomycetes Sp . UNTUK PENCEGAHAN PENYAKIT LAYU FUSARIUM ( Fusarium sp .). 5(1), 86–98. http://ejournal.upnjatim.ac.id/index.php/plumula/article/view/782/656
  9. Lamichhane, J. R., Dachbrodt-Saaydeh, S., Kudsk, P., & Messean, A. (2016). Toward a Reduced Reliance on Conventional Pesticides in European Agriculture. Plant Disease, 100. https://doi.org/10.1094/PDIS-05-15-0574-FE
  10. Lamichhane, J. R., Dürr, C., Schwanck, A. A., Robin, M. H., Sarthou, J. P., Cellier, V., Messéan, A., & Aubertot, J. N. (2017). Integrated management of damping-off diseases. A review. Agronomy for Sustainable Development, 37(2). https://doi.org/10.1007/s13593-017-0417-y
  11. Ma, Y. (2019). Seed coating with beneficial microorganisms for precision agriculture. Biotechnology Advances, 37(7), 107423. https://doi.org/https://doi.org/10.1016/j.biotechadv.2019.107423
  12. Miransari, M., & Smith, D. L. (2014). Plant hormones and seed germination. Environmental and Experimental Botany, 99, 110–121. https://doi.org/10.1016/j.envexpbot.2013.11.005
  13. Moka, S., Singh, N., & Buttar, D. S. (2021). Identification of potential native chitinase-producing Trichoderma spp. and its efficacy against damping-off in onion. European Journal of Plant Pathology, 161(2), 289–300. https://doi.org/10.1007/s10658-021-02321-9
  14. Mukhopadhyay, R., & Kumar, D. (2020). Trichoderma: a beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egyptian Journal of Biological Pest Control, 30(1), 1–8. https://doi.org/10.1186/s41938-020-00333-x
  15. Nurlela, E., Hakim, L., Ulim, A., & Others. (2016). Efektivitas beberapa agen antagonis dan cara aplikasinya untuk menekan pertumbuhan Sclerotium rolfsii pada tanaman kedelai (Glycine max L. Merrill). Jurnal Ilmiah Mahasiswa Pertanian, 1(1), 155–167. https://doi.org/10.17969/jimfp.v1i1.1012
  16. Putri, S. K., & Majid, A. (2019). Efektivitas Pelapisan Benih (Seed Coating) Berbahan Aktif Cendawan Antagonis Untuk Mengendalikan Penyakit Rebah Kecambah (Damping Off) Kacang Tanah. Jurnal Pengendalian Hayati, 2(1), 23. https://doi.org/10.19184/jph.v2i1.17136
  17. Sinha, A., Singh, R., & Verma, A. (2018). Bioefficacy of Trichoderma harzianum and Trichoderma viride against Fusarium oxysporum f . sp . capsici causing wilt disease in chilli. Journal of Pharmacognosy and Phytochemistry, 7(5), 965–966. https://www.phytojournal.com/archives?year=2018&vol=7&issue=5&ArticleId=5670
  18. Sood, M., Kapoor, D., Kumar, V., & Sheteiwy, M. S. (2020). Trichoderma : The “ Secrets ” of a Multitalented. Plants, 9, 762. https://doi.org/10.3390/plants9060762
  19. Toribio, A. J., Jurado, M. M., Suárez-Estrella, F., López, M. J., López-González, J. A., & Moreno, J. (2021). Seed biopriming with cyanobacterial extracts as an eco-friendly strategy to control damping off caused by Pythium ultimum in seedbeds. Microbiological Research, 248(October 2020). https://doi.org/10.1016/j.micres.2021.126766
  20. Vanti, G. L., Masaphy, S., Kurjogi, M., Chakrasali, S., & Nargund, V. B. (2020). Synthesis and application of chitosan-copper nanoparticles on damping off causing plant pathogenic fungi. International Journal of Biological Macromolecules, 156, 1387–1395. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.11.179
  21. Zin, N. A., & Badaluddin, N. A. (2020). Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, 65(2), 168–178. https://doi.org/10.1016/j.aoas.2020.09.003