Characterization of Palm Shell-Derived Bio-Oil Through Pyrolysis

##plugins.themes.academic_pro.article.main##

Leila Utarina
Rusdianasari Rusdianasari
Leila Kalsum

Abstract

Lignocellulosic biomass is a renewable resource used to produce energy, fuels, and chemicals. This study aimed to determine the effect of pyrolysis temperature on product yield and product characterization of bio-oil. In this study, palm shells were selected and prepared as raw materials for bio-oil production. Palm shells were first soaked in 10% HCl and then pyrolyzed at temperatures of 300 oC, 350 oC, 400 oC, and 450 oC in a fixed bed reactor. Afterward, the reactor will emit smoke which later will condense into bio-oil. The experimental results show that a temperature of 450 oC will be a better choice for higher bio-oil yields (44.59%). The characteristics of the bio-oil obtained are density (905 – 1015.17 kg/m3), Kinematic Viscosity (1.21 – 1.5 mm2/s), and flash point (60 – 68.7 oC).

##plugins.themes.academic_pro.article.details##

Author Biographies

Leila Utarina, Politeknik Negeri Sriwijaya

Department of Renewable Energy Engineering

Rusdianasari Rusdianasari, Politeknik Negeri Sriwijaya

Department of Renewable Energy Engineering

Leila Kalsum, Politeknik Negeri Sriwijaya

Department of Renewable Energy Engineering

How to Cite
Utarina, L., Rusdianasari, R., & Kalsum, L. (2022). Characterization of Palm Shell-Derived Bio-Oil Through Pyrolysis. Journal of Applied Agricultural Science and Technology, 6(2), 139-148. https://doi.org/10.55043/jaast.v6i2.69

References

  1. Achmad, Z., Arsa, A. K., Alfitamara, B., & Virgiandini, A. (2022). Renewable Energy from Pyrolysis of Pine Wood with Zeolite Catalyst. Exergy, 19(1), 1-5. https://doi.org/10.31315/e.v19i1.4564.
  2. Afriansyah, H., Ramlan, M. R., & Bow, Y. (2022). Pyrolysis of Lubricant Waste into Liquid Fuel using Zeolite Catalyst. International Journal of Research in Vocational Studies (IJRVOCAS), 1(4), 26-31. https://doi.org/10.53893/ijrvocas.v1i4.72.
  3. Ahmad, R., Hamidin, N., Ali, U. F. M., & Abidin, C. Z. A. (2014). Characterization of bio-oil from palm kernel shell pyrolysis. Journal of Mechanical Engineering and Sciences, 7(1), 1134-1140. http://dx.doi.org/10.15282/jmes.7.2014.12.0110.
  4. Arend M., Nonnen T., Hoelderich W. F., Fischer J., & Groos J. (2011). Catalytic deoxygenation of oleic acid in continuous gas flow for oxygen reduction reaction in PEMFCs. J Mater Chem 22, 20977. https://doi.org/10.1016/j.apcata.2011.04.004.
  5. Asikin-Mijan, N., Lee, H. V., Abdulkareem-Alsultan, G., Afandi, A., Taufiq-Yap, Y.H. (2017). Production of green diesel via cleaner catalytic deoxygenation of Jatropha curcas oil. Journal of Cleaner Production, 167, 1048-1059. https://doi.org/10.1016/j.jclepro.2016.10.023.
  6. Aziz I. (2019). Upgrading Crude Biodiesel of Using Cooking Oil Using H-Zeolite Catalyst. Jurnal Kimia Valensi, 5(1) 79-86. https://garuda.kemdikbud.go.id/documents/detail/1542709.
  7. Badan Pusat Statistik. (2020). Indonesian Palm Oil Statistics 2020.Retrieved from: https://www.bps.go.id/publication/2020/11/27/5a798b6b8a86079696540452/statistik-lingkungan-hidup-indonesia-2020.html.
  8. Biswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., & Bhaskar, T. (2017). Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresource technology, 237, 57-63. https://doi.org/10.1016/j.biortech.2017.02.046.
  9. Chang, W. H., & Tye, C. T. (2013). Catalytic cracking of used palm oil using composite zeolite. Malaysian Journal of Analytical Sciences, 17(1), 176-184. http://www.ukm.my/mjas/v17_n1/Tye.pdf.
  10. Da Mota S. A. P., Mancio A. A., Lhamas D. E. L., de Abreua D. H., Da Silva M. S., Dos Santos W. G., De Castroa A. R., De Oliveira R. M., Araújo M. E., Borges L. E. P. & Machadoa N. T. (2014). Production of Green Diesel by Thermal Catalytic Cracking of Crude Palm Oil (Elaeis Guineensis Jacq) in A Pilot Plant. Journal of Analytical and Applied Pyrolisis. 1, 1-11. https://doi.org/10.1016/j.jaap.2014.06.011.
  11. Dai, L., Wang, Y., Liu, Y., Ruan, R., He, C., Yu, Z., & Tian, X. (2019). Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 107, 20-36. https://doi.org/10.1016/j.rser.2019.02.015.
  12. Ghenai, C., Rasheed, M. A., Alshamsi, M. J., Alkamali, M. A., Ahmad, F. F., & Inayat, A. (2020). Design of hybrid solar photovoltaics/shrouded wind turbine power system for thermal pyrolysis of plastic waste. Case Studies in Thermal Engineering, 22, 100773. https://doi.org/10.1016/j.csite.2020.100773.
  13. Hu, X., Zhang, Z., Gholizadeh, M., Zhang, S., Lam, C. H., Xiong, Z., & Wang, Y. (2020). Coke Formation during Thermal Treatment of Bio-oil. Energy & Fuels, 34(7), 7863-7914. https://doi.org/10.1021/acs.energy fuels.0c01323
  14. Heriyanto, H., Sumbogo, S. M., Heriyanti, S. I., Sholehah, I., & Rahmawati, A. (2018). Synthesis of green diesel from waste cooking oil through hydrodeoxygenation technology with NiMo/γ-Al2O3 catalysts. 1–6. https://doi.org/10.1051/matecconf/201815603032.
  15. Irawan, B., & Hasan, A. (2021). Pyrolysis Process of Fatty Acid Methyl Ester (FAME) Conversion into Biodiesel. International Journal of Research in Vocational Studies (IJRVOCAS), 1(2), 01-10. https://doi.org/10.53893/ijrvocas.v1i2.21.
  16. Lin, B. J., & Chen, W. H. (2015). Sugarcane bagasse pyrolysis in a carbon dioxide atmosphere with conventional and microwave-assisted heating. Frontiers in Energy Research, 3, 4. https://doi.org/10.3389/fenrg.2015.00004.
  17. Liu, H. M., Feng, B., & Sun, R. C. (2011). Acid–chlorite pretreatment and liquefaction of cornstalk in hot-compressed water for bio-oil production. Journal of agricultural and food chemistry, 59(19), 10524-10531. https://doi.org/10.1021/jf2025902.
  18. Nematizade, P., Ghobadian, B., & Najafi, G. (2012). Investigation of fossil fuels and liquid biofuels blend properties using artificial neural network. International Journal of Automotive and Mechanical Engineering, 5, 639-47. http://dx.doi.org/10.15282/ijame.5.2012.10.0051.
  19. Ogunkanmi, J. O., Kulla, D. M., Omisanya, N. O., Sumaila, M., Obada, D. O., & Dodoo-Arhin, D. J. C. S. I. T. E. (2018). Extraction of bio-oil during pyrolysis of locally sourced palm kernel shells: Effect of process parameters. Case studies in thermal Engineering, 12, 711-716. https://doi.org/10.1016/j.csite.2018.09.003.
  20. Özener, O., Yüksek, L., Ergenç, A. T., & Özkan, M. (2014). Effects of soybean biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel, 115, 875-883. https://doi.org/10.1016/j.fuel.2012.10.081.
  21. Pramudya, E. P., Hospes, O., & Termeer, C. J. A. M. (2017). Governing the palm-oil sector through finance: the changing roles of the Indonesian State. Bulletin of Indonesian Economic Studies, 53(1), 57-82. https://doi.org/10.1080/00074918.2016.1228829.
  22. Radha, K. K., Sarada, S. N., Rajagopal, K., & Nagesh, E. L. (2011). Performance and emission characteristics of CI engine operated on vegetable oils as alternative fuels. International Journal of Automotive and Mechanical Engineering, 4, 414-27. http://dx.doi.org/10.15282/ijame.4.2011.4.0034.
  23. Rusdianasari, R., Kalsum, L., Masnila, N., Utarina, L., & Wulandari, D. (2022). Characteristics of Palm Oil Solid Waste and Its Potency for Bio-Oil Raw Material. In 5th FIRST T1 T2 2021 International Conference (FIRST-T1-T2 2021) (pp. 415-420). Atlantis Press. https://dx.doi.org/10.2991/ahe.k.220205.073.
  24. Sabarman J. S., Legowo E. H., D. I. Widiputri D. I. & Siregar A. R. (2019). Bioavtur Synthesis from Palm Fatty Acid Distillate Through Hydrotreating and Hydrocracking Processes. Indonesian Journal of Energy. 2(2), 99-110. https://doi.org/10.33116/ije.v2i2.40.
  25. Sahrani U, S. U. (2019). Karakterisasi Bio Oil dari Limbah Kulit Kakao (Theobrema cacao L) Menggunakan Katalis Ni/Zeolit dengan Tekhnologi Pirolisis (Doctoral dissertation, Universitas Islam Negeri Alauddin Makassar). Retrieved from http://repositori.uin-alauddin.ac.id/id/eprint/15937.
  26. Sulhatun, S. (2019). Pyrotechnology 4 In 1: Prinsip Dasar Teknologi Pirolisa Biomassa. Retrieved from http://repository.unimal.ac.id/id/eprint/4891.
  27. Sukiran, M. A., Kheang, L. S., Bakar, N. A., & May, C. Y. (2011). Production and characterization of biochar from the pyrolysis of empty fruit bunches. American Journal of Applied Sciences, 8(10), 984. https://core.ac.uk/download/pdf/25846670.pdf.
  28. Sandika, N., Bow, Y., & Hasan, A. (2021). Biofuel from Pyrolysis Waste Lube Oil of Refinery Unit III Using Fly Ash of Coal Combustion as a Catalyst. IJFAC (Indonesian Journal of Fundamental and Applied Chemistry), 6(3), 130-135. http://dx.doi.org/10.24845/ijfac.v6.i3.130.
  29. Van Schalkwyk, D. L., Mandegari, M., Farzad, S., & Görgens, J. F. (2020). Techno-economic and environmental analysis of bio-oil production from forest residues via non-catalytic and catalytic pyrolysis processes. Energy Conversion and Management, 213, 112815. https://doi.org/10.1016/j.enconman.2020.112815.
  30. Zaher, F., Gad, M. S., Aly, S. M., Hamed, S. F., Abo-Elwafa, G. A., & Zahran, H. A. (2017). Catalytic cracking of vegetable oils for producing biofuel. Egypt J Chem, 60(2), 291-300. https://ejchem.journals.ekb.eg/article_2967.html.
  31. Zhang, S., Zhang, H., Liu, X., Zhu, S., Hu, L., & Zhang, Q. (2018). Upgrading of Bio-Oil from Catalytic Pyrolysis of Pretreated Rice Husk Over Fe-Modified ZSM-5 Zeolite Catalyst. Fuel Processing Technology, 175, 17-25. https://doi.org/10.1016/j.fuproc.2018.03.002.