FAST PYROLYSIS OF BIOMASS WITH A CONCENTRATED SOLAR POWER: A REVIEW

Sri Aulia Novita^{*,1,2}, Santosa^{*,3}, Nofialdi⁴, Andasuryani³, Ahmad Fudholi^{5,6}, Perdana Putera⁷

 ¹Doctoral Student Agricultural Science Program Andalas University, Padang, Indonesia
 ²Department of Agricultural Mechanization Technology, Faculty Agricultural Technolgy, 50 Kota, Indonesia
 ³Department of Agricultural Engineering, Faculty of Agricultural Technology, Universitas Andalas, Padang, Indonesia
 ⁴Department of Agribusiness, Faculty of Agriculture, Universitas Andalas, Padang, Indonesia
 ⁵Solar Energy Research Institute, University Kebangsaan Malaysia, Bangi Selangor, Malaysia
 ⁶Research Centre for Electrical Power and Mechatronics, National Research and Innovation Agency (BRIN), Bandung, Indonesia

⁷Department of Electrical and Electronics Engineering, University of Nottingham, Nottingham, United Kingdom

*Corresponding Author: Email: sriaulianovita@gmail.com, santosa764@yahoo.co.id

Abstract. Indonesia's biomass energy potential is estimated at around 49,810 MW and is very adequate for the development go renewable energy. An example of a biomass conversion technique is pyrolysis which converts biomass into bio-oil. The optimum temperature for the pyrolysis process is 300-600 °C. Parameters that affect the pyrolysis process such as pretreatment of the material, moisture content and particle size of the material, the composition of biomass compounds, the effect of temperature, heating rate, gas flow rate, type of pyrolysis, and pyrolysis reactor. This is a thermochemical technique in which biomass waste is converted into solid fuel (char), producer gas (syngas), and liquid (bio-oil) without oxygen in a reactor. This article contains a comprehensive review of biomass conversion techniques to bio-oil using the solar energy-based fast pyrolysis method. Furthermore, the exposure used was based on the publication source, year, origin country, research methodology, and focus area. Most research has been empirical and mainly focused on fast pyrolysis and its influencing factors. There are several studies, information, and research recommendations described in this article. **Keywords:** bio-oil; fast pyrolysis; solar energy

1. Introduction

Biomass is a biological material used as a fuel source, either directly or processed through biomass energy conversion techniques. It is one of the best solutions in renewable energy to substitute fossil resources in various applications such as thermal energy production, energy sources, fuels for transportation, chemicals, and biomaterials production (Bridgwater, 2003). In theory, Indonesia's biomass energy potential is estimated at around 49,810 MW and is very adequate for development into renewable energy. The use of biomass offers various benefits, as it is available in each country in various forms. Therefore, it guarantees a secure supply of raw materials for the energy system. The utilization of biomass for alternative energy reduces the environmental impact of current problems such as Carbon Dioxide (CO_2) increase in the environment due to fossil fuel usage (Li *et al.*, 2008). Furthermore, one of the conversion techniques that convert biomass into bio-oil is pyrolysis.

Pyrolysis involves the thermochemical conversion of biomass waste into solid fuel (char), producer gas (syngas), and liquid (bio-oil) without oxygen presence in a reactor (Ohliger *et al.*, 2013). It involves the decomposition of organic material, without air or oxygen. According to Basu (2010), biomass pyrolysis generally takes place from 300 °C to 600 °C. This technique is more efficient and flexible than other thermochemical conversion processes. The pyrolysis technique is cheaper, environmentally friendly, and easier to use and the results obtained are more optimal. Furthermore, the liquid produced in this process is the initial product of bio-oil, which in subsequent treatment may become biodiesel or bioethanol (Basu, 2010). This process can also convert biomass into bio-oil, biochar, and gas products.

Research by Novita *et al.* (2014), involved the design of a pyrolysis device to produce bio-oil, through the use of a gas stove and firewood burning stove. Burning stoves use gas and firewood, however the operating costs are quite high and firewood is difficult to collect. This high cost, increases the cost of production of bio-oil. Therefore, to reduce these operational costs, several studies have designed a concentrated solar energy-based pyrolysis reactor that is renewable, sustainable and environmentally friendly. Furthermore, the use of solar energy in pyrolysis is more efficient than heat energy (Mondal *et al.*, 2018). Solar energy is clean, cheap, safe, unlimited, and renewable, with tremendous economic potential in Indonesia.

For combustion in the bio-oil reactor, solar energy can be used as a heat source. When a solar collector alongside a concentrated solar power (CSP) device is applied, the intensity is increased. The thermal energy source using CSP produces gases with a high heating value. The rate of heat increase ranges between 10 - 500 0C/s and the resulting temperature is 800 -1600 0C, using a labor-scale solar furnace with a maximum power of 1.5 KW. The higher the temperature, the more gas is produced (Weldekidan *et al.*, 2020). Furthermore, CSP is a renewable energy technology with great potential because of its ability to generate heat and electricity as well as easy storage of thermal energy in thermal storage devices (Monnerie *et al.*, 2020).

Solar energy application involves photon and thermal energies. Photon energy can be converted into electricity in the presence of a solar cell, while solar thermal energy can be used in cookers, dryers, water heaters, power plants, seawater distillation, and others (Sen, 2008). According to Jiang (Jiang *et al.*, 2005), temperature changes in solar cells occur due to temperature, cloud conditions, and wind speed in the environment around the solar panel placement area.

The solar collector is a device required to convert solar radiation energy into thermal energy for various purposes. A prism is a type of solar collector which has the ability to receive the intensity of solar radiation from all positions, therefore, it is expected that this energy utilization will be more effective. This solar collector absorbs energy from solar radiation and converts it to heat in the collector pipes, thereby increasing water temperature. Natural convection also occurs based on the thermosiphon effect, due to differences in fluid density (King *et al.*, 2005). CSP is a technology that collects sunlight with a collector, then converts it into heat or electricity. A solar concentrator is a device used to collect light over a large area and focus its energy on a single focal point to increase the temperature to a higher level

The absorbent plate will capture most of the solar radiation and a small part will be reflected. The absorbed radiation will turn into heat energy which is concentrated by focusing it into a smaller area. When concentrated light is converted to heat it generates electricity, which drives a heat engine connected to an electric generator. CSP generally requires large amounts of direct solar radiation, and its energy generation drops dramatically with cloud cover. Therefore, pyrolysis with the parabolic CSP is economically feasible, environmentally friendly, effective in dry countries, and has agricultural potential (Giwa *et al.*, 2019).

2. Biomass Source

Biomass includes wastes of wood, agriculture, plantation, forest products, organic components from industries, and households. Some of its chemical elements include charcoal (C), hydrogen (H), acids or oxygen (O), nitrogen (N), sulfur (S), ash, and water, all of which are bound in a chemical compound. Due to its beneficial properties, it is considered sustainable. Biomass energy sources have several advantages compared to fossil energy.

In this research, biomass waste used was often given treatment to facilitate the next process. These treatments include:

- 1) Raw materials were dried in a dryer, thereby reducing the moisture content to about 5-8%.
- Grinding materials with various sizes of 2-5 mm, olive husks, corn cobs, and tea dregs The sample is reduced in size and sieved to obtain particle sizes between <0.5 and> 2.2 mm (Demirbas, 2004).

To determine the composition of biomass, proximate and ultimate analyzes are often carried out. Proximate analysis is performed to determine the moisture content, volatile matter, fixed carbon, non-volatile biomass fraction, ash content, and inorganic residue after combustion. Biomass with a high volatile fraction will produce a higher bio-oil yield compared to biomass with high fixed carbon content. Biomass which has high fixed carbon can produce high biochar (Vassilev *et al.*, 2010).

The ultimate analysis test produces more comprehensive data than proximate analysis. This test determines the amount of carbon, hydrogen, nitrogen, sulfur, and oxygen (CHNSO). The ratio of elements obtained from the final analysis provides a better comparison among the raw materials which is used to ascertain the calorific value (Vassilev *et al.*, 2010). Some of the proximate and ultimate analyzes carried out on biomass waste are shown in Table 1.

Biomass Types	C (wt%)	H (wt%)	$\begin{array}{c} 0 \\ (\dots t^{0}) \end{array}$	N (wt%)	S (mut0())	Ash	Moisture	HHV (MU/Ira)
			(Wt%)		(Wt%)	(wt%)	(Wt%)	(MJ/Kg)
Rice Husk	48.36	5.13	32.79	0.72	0.31	12.50	6.80	16.79
Corncob	49.32	5.35	44.7	0.63		1.49	7.36	16.66
Birchwood	48.45	5.58	45.46	0.20	-	0.30	5.26	17.02
Walnut peel	50.58	6.41	41.21	0.39	_	1.40	8.11	19.20 ^a
Safflower	59.05	8.87	26.72	3.03	_	2.33	6.04	23.86 ^a
Sesame Stalks	48.62	5.65	37.89	0.57	_	7.26	9.53	19.10 ^a
Soybean Meal	52.46	6.17	26.51	8.72	_	6.15	9.15	23.23
Mixed Wood	47.58	5.87	42.10	0.20	0.03	2.10	7.76	-
Rubber Wood	49.50	6.10	44.60	_	_	-	-	-
Straw	36.89	5.00	37.89	0.40	_	19.80	_	16.78
Coconut shell	47.97	5.88	45.57	0.30	_	0.50	_	19.45
Pine Wood	45.92	5.27	48.24	0.22	_	0.35	7.99	18.98
Almond peel	47.63	5.71	44.48	_	_	2.18	_	-
Beech Wood Powder	50.8	5.9	42.9	0.3	0.02	0.4	6	-
Olive husks	50.90	6.30	38.60	1.37	0.03	2.80	8.50	_
Timber wood	47.72	5.54	44.85	0.89	_	1.00	-	-
Pine	50.33	6.21	43.07	0.34	0.05	0.26	5.49	
Jatropha seeds	55.8	4.78	31.13	7.35	0.93	4.7	8.1	
Castor Seed	29.28	3.91	29.84	-	0.03	2.2	37.37	
Coffee Waste	46.1	5.6	29.1	5.2	-	2.5	11.3	

Table 1. Basic Composition and Physical Properties of Biomass (Vassilev et al., 2010).

The chemical structure and composition of biomass are highly dependent on the origin and type of material (Vassilev *et al.*, 2010). The decomposition also depends on moisture content (<8%), particle size (<5 mm), density (ρ), ash content, lignocellulose composition, and heating value of the material. Other important factors affecting the thermochemical process of materials are temperature (the higher the temperature, the faster the process), pressure (the greater the pressure, the higher the temperature), speed of temperature increase (heating rate), and duration of the combustion process. Hemicellulose, cellulose, and lignin begin to decompose at 200 $^{\circ}$ C - 250 $^{\circ}$ C, 280 $^{\circ}$ C - 350 $^{\circ}$ C, and 300 $^{\circ}$ C - 350 $^{\circ}$ C respectively, and end at 400 $^{\circ}$ C - 450 $^{\circ}$ C. Several studies have shown the effect of material particle size, moisture content, and temperature on the amount of bio-oil and charcoal produced (Table 2).

 Table 2. Biomass Size, Moisture Content, and Temperature for Rice Husk and Corn Cob

 Pyrolysis

Material Type	Particle Size(mm)	Moisture Content (% wt)	Temperature (⁰ C)	Heating Rate (⁰ C/min)	Bio-oil (%)	Biochar (%)	Ref
Corn Cob	0.425 - 0.6	7.36	400 - 450	7 - 40	17.99–	67.84 - 72.8	Chintala <i>et al.</i> ,
					21.05		(2017)
Corn Cob	0.5 - 2.2	19.4 –	676.85	10 K/s	-	45.5 - 65.7	Demiral et
		36.6					al., (2012)
Rice Husk	1.68 - 3.36	6	500 - 600	10	18 - 30.4	30 - 38.5	Demirbas
							(2004)
Rice Husk	90–600 µm	7.7	465	10	56	24	Huang et al.,
							(2018)
Rice Husk	0.63 - 1	6	450	10	70	28	Ji-lu (2007)

From Table 2, it is observed that the particle size, temperature, and moisture content of the material influenced the amount of bio-oil produced. However, the data above cannot be used as an appropriate reference because further research is required.

According to the research of Huang (2018), the chemical composition of corn cobs (wt%) is hemicellulose 29.9%, cellulose 33.8%, lignin 30.7%, carbon 17%, and Volatile 80.9% Demiral *et al.* (2012). Rice husk contains 24.3% hemicellulose, 34.4% cellulose, 19.2% lignin, 70.5% volatile compounds, and 16.6% fixed carbon (Alvarez *et al*, 2018). Theoretically, high volatile fraction biomass is more suitable for bio-oil production, whereas biomass with high fixed carbon is more suitable for biochar production (Madadi, 2017).

3. Fast Pyrolysis

Pyrolysis involves heating a substance in the absence of oxygen to decompose its material components. Therefore, the shell is heated at significantly high temperatures in the absence of oxygen will cause the decomposition of complex compounds that compose hardwood. This is followed by the production of substances in three forms, namely char, bio-oil, and gases (Soltani, *et al.*, 2015). Fast pyrolysis is used for bio-oil and gas production, and there are two main types: flash and ultra-fast. The purpose of fast pyrolysis is to prevent further breakdown of products into non-condensable compounds. Therefore, the parameters affecting it need to be carefully observed to increase the bio-oil yield. The Important parameters that affect the fast pyrolysis process include the water content, size of the material, type of reactor, reactor material, heat source, temperature, and heating rate.

The parameters mainly influencing fast pyrolysis include heat transfer speed, and the fine size of biomass particles. Pyrolysis temperature exerts the greatest effect on the characteristics of biooil produced, which increases with increasing temperature from 450 to 550 °C. Furthermore, the levoglucosan concentration in bio-oil decreased significantly with increasing pyrolysis temperature, while the increase after analytic pyrolysis decreased. Pyrolysis temperature and residence time greatly influence bio-oil characteristics (Kato *et al.*, 2016).

Fast pyrolysis carried out on rice husks is performed at a temperature of 400-600 ^oC using continuous pyrolysis with a cone-shaped reactor and direct charcoal removal. The highest bio-oil yield is at 450 ^oC by 70% due to material capacity and heat transfer that occurs in the tool (WikiPedia, 2022).

Other factors affecting fast pyrolysis include system design and procedure (Alvarez, 2014), bio-oil quality, application (Czernik & Bridgwater, 2004) and fractionation method (Mohan, 2006). The cost for solar pyrolysis will be effective if the conditions for fast pyrolysis of biomass are optimal (Table 3).

Concentrated sunlight radiation is capable of producing high temperatures to cataylse biomass pyrolysis (Piatkowski, *et al.*, 2011). Solar energy which is applicable in biomass pyrolysis, produces fuel (bio-oil) which is easy to store and transport (Chueh , *et al.*, 2010). This energy has the potential to produce bio-oil having high heating value with lower CO₂ emissions, compared to conventional pyrolysis (Nzihou, *et al.*, 2012).

Table 3. Reactor Type, Temperature and Pyrolysis Types that affect Bio-oil yield (Mondal *et al.*,2018)

Diamage Tura	B asator tupa	Pyrolysis	Bio-oil Yield	Durolusis Turo
Biomass Type	Reactor type	temperature (⁰ C)	(%)	Pyrorysis Type
Wine Dregs	Stainless steel fixed-bed	550	27.6	Fast pyrolysis
	reactor			
Pine hard and soft	Tubular vacuum pyrolysis	450	55.0	Fast pyrolysis
wood	reactor			
Rice Husk	Fluidized-bed reactor	450	60.0	Fast pyrolysis
Wooddust	Cyclone reactor	650	74.0	Fast pyrolysis
Corn cob	Fluidized-bed reactor	550	56.8	Fast pyrolysis
Potato peel	Stainless steel fixed-bed	550	24.8	Steam
	reactor			pyrolysis
Sawdust	Conical spouted bed reactor	500	75.0	Flash pyrolysis
Pinewood	Auger reactor	450	50.0	Fast pyrolysis
Furniture powder	Fluidized-bed reactor	450	65.0	Fast pyrolysis
waste				
Sugar Cane Waste	Fixed-bed fire-tube heating	475	56.0	Fast pyrolysis
	reactor			
Corn cobs and stalks	Bubbling fluidized bed	650	61.6	Fast pyrolysis
	reactor			
Laurel (Laurus nobilis	Fixed-bed reactor	500	21.9	Fast pyrolysis
L.) extraction				
Jute stick continuous	Fluidized bed reactor	500	66.7	Fast pyrolysis
feeding				
Apricot Pulp	Fixed-bed reactor	550	22.4	Fast pyrolysis

Table 4. First Research Results and Recommendations.

Deferences	Decentral Deculto	Further Research		
References	Research Results	Recommendations		
Weldekidan,	Biomass and solar energy sources are combined to produce heat energy, 1)	It does not explain the		
et al. (2020)	electricity, transportation fuels, chemical materials, and biomaterials using	performance of solar		
	pyrolysis.	pyrolysis to the		
	1) Raw materials: Chicken manure and rice husks with sizes of 280 and 500	quality of bio-oil		
	μm	produced		
	2) Pyrolysis Reactor: concentrated solar radiation to produce pyrolysis gas 2)	High temperatures		
	with high calorific value, using a laboratory-scale solar furnace with a	will reduce the		
	max power of 1.5 KW	amount of bio-oil		
	3) Temperature: 800–1600°C, heating rate: 10 to 500°C/s	yield but increase the		
	4) Yield: the gas produced increases to 10 to 39%, reduces the yield of bio-	amount of gas		
	oil from 48% to 41% wt, and bio-charcoal 42% to 18% wt.	produced		
	5) The specific energy of a gas at a material particle size of 280 µm is 3)	Specifically,		
	7255kJ/kg	concentrated solar is		
	6) The gas produced from this solar pyrolysis reactor can be used directly as	used to produce gases		
	fuel for engines and power plants	with very high		
	7) The higher the temperature, the more gas produced. The resulting gas has	temperatures		
	a high calorific value hence it can be used directly as fuel in the engine.			

4. Further Research Recommendations

Several studies have developed a pyrolysis technique that converts solar energy into concentrated thermal energy using concentrated solar power. Pyrolysis involving solar energy, *Novita et al.* 185 JAAST 6(2): 180–191 (2022)

which is the energy of the future, produces renewable energy that is cheap, environmentally friendly, acceptable, with appropriate technology, and easy application. Some research summaries and recommendations for further research are shown in Table 4-7.

References	Research Results	Further Research
(Monnerie <i>et</i> <i>al.</i> , 2020).	 Concentrated solar thermal technology can be considered renewable energy technology, because of its ability to generate heat and electricity as well as heat storage in the device. Conventionally, this approach is widely used for electricity generation. When combined with a proper conversion process, it can also be used to produce methanol. 1) Methanol with a large combustion speed produces higher efficiency compared to conventional fuels 2) The simulation results show that this tool is capable of producing 27.81 million liters of methanol with 350 MW of solar power 3) CSP with solar thermal collecting glass covers an area of 880685 m² 	CSP is considered a very promising renewable energy technology because of its ability to generate heat and electricity and its direct connection to thermal storage devices
Pozzobon <i>et</i> <i>al.</i> , (2016)	 Raw material: beech wood, wood fiber The tool used is the Energy Concentrated solar radiative heat flux above 1 MW/m2 which is capable of producing temperatures above 1200°C, charcoal gasification, and heat cracks. An artificial sun, and a new reaction chamber that monitors the mass of the sample during the process and can trap the resulting tar using a liquid nitrogen-cooled tar condensing device Combustion temperature: 1200-1500°C The resulting light gas was analyzed by micro-GC analysis 	CSP is capable of producing temperatures higher than 1200°C, which can change the composition of charcoal, tar, and water vapor. This research creates an artificial sun and a new reaction chamber. The equipment used is microGC, radiometer, radiative heat flux with a surface temperature of about 1500°C.
Mondal <i>et</i> <i>al.</i> , 2018 Zeaiter <i>et</i> <i>al.</i> , (2018)	 The utilization of biomass energy becomes attractive because fossil energy is running low 1) The pyrolysis process can convert biomass into liquid, solid, and gas products. The use of solar energy for the pyrolysis process is better at producing heat energy. 2) Biomass type, reactor type, and pyrolysis temperature affect the yield of bio-oils, ranging from 21.9 to 75%. 3) Bio-oil can be recommended as an alternative fuel for transportation engines 4) Bio charcoal and non-condensing gas can be used as a candidate fuel for power generation and industrial heating 5) Solar energy-based pyrolysis is the most appropriate technology used for hilly areas and remote areas. Solar thermal pyrolysis is a promising technology to meet global energy needs, but there are several challenges that should be faced. 1) This study examines the integration of concentrated solar thermal power with the waste tire pyrolysis process. 2) One of the highlights is the application of CSP to produce heat energy, thereby reducing the use of fossil energy. The integration between CSP and Fresnel Reflectors technology (LFRs) can generate hot air. 3) The resulting temperature is 520 - 550 °C using SAM solar energy in Lebanon could provide an average of 47.14% of the pyrolysis reactor's annual energy requirements. 4) Solar energy storage in summer can increase by 60.8% and decrease by 26.6% in winter 	 The weakness of bio-oil is that it can't be used directly in engines Achievement of lower reactor temperatures during inactive solar radiation; Solar energy storage problems; Lower energy conversion efficiency; Significant heat loss due to air convection over the reactor surface; Reactor material compatibility issues Recommendation: Optimization in measuring the focus area of the solar thermal concentrated in the pyrolysis reactor Storage of absorbed solar thermal energy
	5) Analysis of solar energy requirements for the pyrolysis process of tires can provide 47% of the energy needed by the reactor.	

Table 5. Second Research Results and Recommendations

Table 6.	Third	Research	Results	and F	Recommendations
----------	-------	----------	---------	-------	-----------------

References	Research Results		Further Research
Kelefences	Research Results		Recommendations
Joardder et	Integration of solar assisted heating reactor in pyrolysis, which	1)	Proper design is essential to
al., (2017)	illustrates the application and feasibility of solar integrated pyrolysis		transfer heat throughout the
	technology. possible challenges and scope of future development of		biomass during pyrolysis
	integrated solar pyrolysis technology are described. The advantages of	2)	Extensive research is
	using solar pyrolysis are:		required to complete the CSP
	1) High heat flux to heat the pyrolysis reactor quickly to high		and evenly heat the reactor
	temperature.		surface for material
	2) The focal area is relatively small to reduce secondary reactions in		decomposition
	various areas.		
	3) Renewable heat sources reduce heating costs of pyrolysis reactors		
	and also protect reserves of non-renewable energy sources.		
	4) No burning of fossil fuels, therefore this system produces no		
	emissions and is considered environmentally sustainable		
	5) Improved yield quality due to the absence of contamination of		
	pyrolysis gas with combustion products		
	6) The reactor and gas do not need to be calculated at the optimal		
	temperature because the heating system used is quite easily.		
Ndukwu <i>et</i>	1) Solar energy and biomass produce energy that is sustainable and	1)	Current reactor designs are
al., (2020)	does not damage the environment.		not sufficient to propel solar
	2) The characteristics of this two-energy raw material are used by		pyrolysis towards
	the pyrolysis method to produce transportable liquid and gas	•	commercialization.
	fuels, while bio-char which is considered a by-product has been	2)	Better designs are needed
	widely used in soil improvement.		that will increase the quantity
	3) Combining biomass and solar energy can produce high energy	2)	of biomass processing.
	(1) The effectiveness of the solar purelysis process depends on the	5)	such reactors must operate
	4) The effectiveness of the solar pyrolysis process depends of the		isothermal conditions and
	dynamics		modeling must reflect
	5) This research discusses the benefits of solar-biomass pyrolysis		dynamic conditions
	available optical concentration devices concentual heating	4)	Integration of nanoscale
	modes solar thermal orientation configurations and existing	7)	particles in reactors and
	reactors, as well as some basic model equations applied in solar		concentrators
	biomass pyrolysis.		
Sobek &	1) From the thermogravimetric data (TGA), the heating rates shown	Tl	nis kinetic modeling
Werle	in solar pyrolysis are obtained: 5, 10, 15, and 20 K/min.	ap	plication requires a deeper
(2020)	2) NETZSCH kinetic neo software is used to approach the kinetics	st	udy and is applied to the
	of lignocellulosic biomass	ca	lculation of the CSP-based
	3) The TGA data is enriched with the gas analyzer indication and the	C	SP pyrolysis reactor with
	results of the investigated solar pyrolysis experiments in the	di	fferent material characteristics.
	laboratory reactor design itself.		
	4) The methodology presented consists of (1) conversion analysis:		
	Friedman, Kissinger-Akahira-Sunose and Ozawa-Flynn-Wall		
	analysis which yields the real activation energy $E\alpha$, varying		
	between 185.37 to 375.56 kJ/mol with a reaction rate of $0.1 - 0, 9$,		
	(2) identification of the reaction model with a general master plot		
	method showing that the decomposition is driven by three-		
	dimensional diffusion (D3) with a transition to the three-		
	dimensional phase boundary (R3) and reaction sequence based		
	models (F1, F2), Fn) at the end of the conversion. Finally, (3) the		
	development of a kinetic model is carried out based on		
	experimental observations, resulting in modeling of the 3 main		
	5) The activation energy of CO ₂ release in the first step is		
	5) The activation energy of CO_2 release in the first step is 150.02kL/mol and in the second step is 256.78 kL/mol this apergy.		
	release is observed at 250° C and 440° C		
	6) The formation of CO follows the reaction mechanism R3 with an		
	activation energy of 181 kJ/mol and a pre-exponential factor of		
	12.16 log (1/s). The results of the kinetic model and the		
	isoconversion method were tested using the Fisher-Snedecor test.		

Table 7. Four	th Research	Results ar	nd Recommen	dations
---------------	-------------	------------	-------------	---------

References		Research Results	Further Research
Zong at al	1)	Research temperatures were 600, 900, 1200, and 2000 °C heating	Eurther research is needed on the
(2017)	1)	rate 50 ° C/s and argon flow rate 6 NI /minute	performance of solar energy-
(2017)	2)	Gas products were analyzed by micro-GC, charcoal characterized	based pyrolysis techniques
	_/	by CHNS, while bio-oil was analyzed by CHNS, Karl-Fischer	therefore, it can determine the
		titration, and GC-MS analysis.	characteristics of bio-oil.
	3)	An increase in temperature will significantly increase the yield of	
		gaseous products and LHV, which is due to the tar reaction in the	
		formation of H_2 and CO.	
	4)	The characteristics of charcoal and vegetable oils are very	
		temperature dependent. Its high energy content indicates that the	
		charcoal and oil obtained can be used as valuable solid and liquid	
	5)	tuels.	
	5)	The temperature produced by CSP is 900°C, the bio-oil yield	
		the bio oil water content	
Morales <i>et</i>	1)	This research studied the pyrolysis of orange peels due to solar	The solar pyrolytic process can
$al_{}(2014)$	1)	radiation which was applied as an energy source using a	be an important method of
, ()		concentrator solar parabolic.	producing solar liquid fuel
	2)	The Monte Carlo ray-tracing method is used for optical analysis	because of its potential to
		that can provide a detailed description of the 3-dimensional	convert an unlimited amount of
		performance of the solar thermos system	solar energy into chemical
	3)	The average surface irradiation of the pyrolysis reactor is 15.65	energy. The use of solar
		suns. To ensure optimal operating conditions, the peak irradiance	pyrolysis can reduce greenhouse
		was calculated by the ray-tracing method.	gas emissions.
	4)	The reflectivity of biomass (37.85%) and the difference in	
		ambient and reactor temperature (36.23%) is the main caused of	
		heat loss. Optical and thermodynamic principles are applied to	
	5)	The neak temperature reached by the solar pyrolytic reactor is	
	5)	465°C at the focal point	
	6)	The total weight loss of orange peels was 79% by weight with an	
	- /	average radiation rate of 12.55 kW/m ² .	
	7)	Compounds produced for the energy, chemical, and	
		pharmaceutical industries are identified in bio-oils such as (Z) -9-	
		octadecenamate, diisoostyl phthalate, squalene, d-limonene, and	
		phenol.	

Solar pyrolysis can be used for various needs, depending on the expected results. The pyrolysis process with a temperature of 350 - 600 °C produces a high yield bio-oil, while the pyrolysis temperature above 700 - 2000 °C produces gas that is used for electrical energy. The utilization of solar energy for pyrolysis is helpful in produce high temperatures, so this process must continue to be developed.

5. Conclusion

Fast pyrolysis is used for bio-oil and gas production, and there are two main types: flash and ultra-fast. The purpose of fast pyrolysis is to prevent further breakdown of products into noncondensable compounds. Pyrolysis involves the thermochemical conversion of biomass waste into solid fuel (char), producer gas (syngas), and liquid (bio-oil) without oxygen presence in a reactor. The Important parameters that affect the fast pyrolysis process include the water content, size of the material, type of reactor, reactor material, heat source, temperature, and heating rate. CSP is a renewable energy technology with great potential because of its ability to generate heat and electricity as well as easy storage of thermal energy in thermal storage devices. The use of solar energy to heat the pyrolysis reactor still requires further development. In-depth studies are also needed on the use of solar energy in pyrolysis, supporting factors, mathematical models, optimization of heat transfer, proper reactor design, characteristics of the bio-oil produced, optimal temperature, heat transfer speed, and unstable bio-oil conditions which need to be upgraded in order to become fuel-based. With several literature reviews carried out, this research needs to be developed in order to ascertain the correct methods, reactor designs, CSP installation, performance test of the pyrolysis reactor with CSP, raw material characteristics, temperature, heat rate, and others.

References

- Alvarez, J., Lopez, G., Amutio, M., Bilbao, J., & Olazar, M. (2014). Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. *Fuel*, 128, 162-169. https://doi.org/10.1016/j.fuel.2014.02.074
- Basu, P. (2010). Biomass Gasification and Pyrolisis: *practical design and theory*. Academic press. ISBN 978-0-12-374988-8
- Bridgwater, A. V. (2003). Renewable fuels and chemicals by thermal processing of biomass. *Chemical engineering journal*, 91(2), 87-102. https://doi.org/10.1016/S1385-8947(02)00142-0
- Chueh, W. C., Falter, C., Abbott, M., Scipio, D., Furler, P., Haile, S. M., & Steinfeld, A. (2010).
 High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. *Science*, 330 (6012), 1797-1801.
 https://www.science.org/doi/10.1126/science.1197834
- Chintala, V., Kumar, S., Pandey, J. K., Sharma, A. K., & Kumar, S. (2017). Solar thermal pyrolysis of non-edible seeds to biofuels and their feasibility assessment. Energy Conversion and Management, 153, 482–492. https://doi.org/10.1016/j.enconman.2017.10.029
- Czernik, S., & Bridgwater, A. V. (2004). Overview of applications of biomass fast pyrolysis oil. *Energy & fuels*, 18(2), 590-598. https://pubs.acs.org/doi/10.1021/ef034067u
- Demiral, I., Eryazici, A., & Şensöz, S. (2012). Bio-oil production from pyrolysis of corncob (Zea mays L.). *Biomass and Bioenergy*, 36, 43–49. https://doi.org/10.1016/j.biombioe.2011.10.045
- Demirbas, A. (2004). Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. *Journal of analytical and applied pyrolysis*, 72(2), 243-248. https://doi.org/10.1016/j.jaap.2004.07.003
- Giwa, A., Yusuf, A., Ajumobi, O., & Dzidzienyo, P. (2019). Pyrolysis of date palm waste to biochar using concentrated solar thermal energy: Economic and sustainability implications. *Waste Management*, 93, 14–22. https://doi.org/10.1016/j.wasman.2019.05.022
- Huang, A. N., Hsu, C. P., Hou, B. R., & Kuo, H. P. (2018). Production and separation of rice husk pyrolysis bio-oils from a fractional distillation column connected fluidized bed reactor. Powder Technology, 323, 588–593. https://doi.org/10.1016/j.powtec.2016.03.052
- Jiang, J. A., Huang, T. L., Hsiao, Y. T., & Chen, C. H. (2005). Maximum Power Tracking for Photovoltaic Power Systems. *Journal of Applied Science and Engineering*, 8(2), 147-153. https://doi.org/10.6180/jase.2005.8.2.07
- Ji-lu, Z. (2007). Bio-oil from fast pyrolysis of rice husk: Yields and related properties and improvement of the pyrolysis system. *Journal of Analytical and Applied Pyrolysis*, 80(1), 30-35. https://doi.org/10.1016/j.jaap.2006.12.030
- Joardder, M. U. H., Halder, P. K., Rahim, M. A., & Masud, M. H. (2017). Solar pyrolysis: Converting waste into asset using solar energy. In *Clean Energy for Sustainable*

Development: Comparisons and Contrasts of New Approaches. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805423-9.00008-9

- Kato, Y., Enomoto, R., Akazawa, M., & Kojima, Y. (2016). Characterization of Japanese cedar bio-oil produced using a bench-scale auger pyrolyzer, *SpringerPlus*, 5(1), 1-11. https://doi.org/10.1186/s40064-016-1848-7
- King, D. L., Murray, A. T., Gonzalez, S., Boyson, W. E., & Galbraith, G. M. (2005). Array Performance Characterization and Modeling Method for Real-Time System Performance Analysis. 1–3. https://www.osti.gov/servlets/purl/1494237
- Li, Z., Wang, L., Hays, T. S., & Cai, Y. (2008). Dynein-mediated apical localization of crumbs transcripts is required for Crumbs activity in epithelial polarity. *The Journal of cell biology*, 180(1), 31-38. https://doi.org/10.1083/jcb.200707007
- Madadi, M., & Abbas. A. (2017) Lignin Degradation by Fungal Pretreatment: A Review. *J Plant Pathol Microbiol*, 8 (398). https://doi.org/10.1016/j.jaap.2014.07.012
- Mohan, D., Pittman Jr, C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: a critical review. *Energy & fuels*, 20(3), 848-889. https://pubs.acs.org/doi/10.1021/ef0502397
- Mondal, S., Mondal, A. K., Chintala, V., Tauseef, S. M., Kumar, S., & Pandey, J. K. (2018). Thermochemical pyrolysis of biomass using solar energy for efficient biofuel production: a review. *Biofuels*, 12(2), 125-134. https://doi.org/10.1080/17597269.2018.1461512
- Monnerie, N., Gan, P. G., Roeb, M., & Sattler, C. (2020). Methanol production using hydrogen from concentrated solar energy. *International Journal of Hydrogen Energy*, 45(49), 26117-26125. https://doi.org/10.1016/j.ijhydene.2019.12.200
- Morales, S., Miranda, R., Bustos, D., Cazares, T., & Tran, H. (2014). Solar biomass pyrolysis for the production of biofuels and chemical commodities. *Journal of Analytical and Applied Pyrolysis*, 109, 65–78. https://doi.org/10.1016/j.jaap.2014.07.012
- Ndukwu, M. C., Horsfall, I. T., Ubouh, E. A., Orji, F. N., Ekop, I. E., & Ezejiofor, N. R. (2021). Review of solar-biomass pyrolysis systems: Focus on the configuration of thermal-solar systems and reactor orientation. *Journal of King Saud University - Engineering Sciences*, 33(6), 413-423. https://doi.org/10.1016/j.jksues.2020.05.004
- Novita, S. A., Djinis, M. E., Melly, S., & Putri, S. K. (2014). Processing Coconut Fiber and Shell to Biodiesel. International Journal on Advanced Science, Engineering and Information Technology, 4(5), 386. https://doi.org/10.18517/ijaseit.4.5.440
- Nzihou, A., Flamant, G., & Stanmore, B. (2012). Synthetic fuels from biomass using concentrated solar energy–a review. *Energy*, 42 (1), 121-131. https://doi.org/10.1016/j.energy.2012.03.077
- Ohliger, A., Förster, M., & Kneer, R. (2013). Torrefaction of beechwood: A parametric study including heat of reaction and grindability. Fuel, 104, 607–613. https://doi.org/10.1016/j.fuel.2012.06.112.
- Piatkowski, N., Wieckert, C., Weimer, A. W., & Steinfeld, A. (2011). Solar-driven gasification of carbonaceous feedstock—a review. *Energy & Environmental Science*, 4(1), 73-82. https://pubs.rsc.org/en/content/articlelanding/2011/ee/c0ee00312c
- Pozzobon, V., Salvador, S., & Bézian, J. J. (2016). Biomass gasification under high solar heat flux: Experiments on thermally thick samples. *Fuel*, 174, 257-266. https://doi.org/10.1016/j.fuel.2016.02.003
- Sen, A. (2008). Violence, Identity and Poverty. Journal of Peace Research, 45(1), 5–15. https://doi.org/10.1177/0022343307084920
- Sobek, S., & Werle, S. (2020). Kinetic modelling of waste wood devolatilization during pyrolysis based on thermogravimetric data and solar pyrolysis reactor performance. *Fuel*, 261(August 2019), 116459. https://doi.org/10.1016/j.fuel.2019.116459
- Soltani, N., Bahrami, A., Pech-Ganul, M. I., dan Gonzalez, L. A. (2015). Review on the Physicochemical Treatments of Rice Husk for Production of Advanced Materials. *Chemical Engineering Journal*, 264, 899-935. https://doi.org/10.1016/j.cej.2014.11.056

- Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010), An overview of the chemical composition of biomass, *Fuel*, 89(5) 913–933, https://doi.org/10.1016/j.fuel.2009.10.022
- Weldekidan, H., Strezov, V., Li, R., Kan, T., Town, G., Kumar, R., He, J., & Flamant, G. (2020). Distribution of solar pyrolysis products and product gas composition produced from agricultural residues and animal wastes at different operating parameters. *Renewable Energy*, 151, 1102-1109. https://doi.org/10.1016/j.renene.2019.11.107

WikiPedia (2022). Pengertian Pirolisis. https://id.wikipedia.org/wiki/Pirolisis

- Zeng, K., Gauthier, D., Minh, D. P., Weiss-Hortala, E., Nzihou, A., & Flamant, G. (2017). Characterization of solar fuels obtained from beech wood solar pyrolysis. *Fuel*, 188, 285– 293. https://doi.org/10.1016/j.fuel.2016.10.036
- Zeaiter, J., Azizi, F., Lameh, M., Milani, D., Ismail, H. Y., & Abbas, A. (2018). Waste tire pyrolysis using thermal solar energy: An integrated approach. *Renewable Energy*, 123, 44-51. https://doi.org/10.1016/j.renene.2018.02.030