The Use of Aquacrop Model for Soybean in Various Water Availability Within a Lysimeter System

##plugins.themes.academic_pro.article.main##

Farchan Mushaf Al Ramadhani
Cahyoadi Bowo
Slameto Slameto

Abstract

The AquaCrop model is widely used under various agro-ecological conditions to reduce farm water consumption. The study aimed to simulate, validate, and measure the performance of AquaCrop models for canopy cover, biomass and soybean crop yields cultivated within a lysimeter. This research was conducted in the experimental field of the Faculty of Agriculture, the University of Jember, Indonesia (8°09'45.1" S, 113°42'58.2" E, 101 m a.s.l). There are four treatments in 4 lysimeters, namely P1 (irrigation based on recommendation), P2 (irrigation 95-105% FC), P3 (irrigation 75-85% FC) and P4 (irrigation 55-65% FC). The AquaCrop model is calibrated using canopy cover (CC) and then validated to predict the biomass and soybean yield. The experiment revealed that the model simulates better CC, biomass, and soybean yields with full irrigation than deficit irrigation. The performance of the AquaCrop model for soybeans of the Deja 2 variety in predicting CC, biomass, and soybean yield is impressive and reasonable. For the CC we found R2 ranges from 0.956 to 0.995, RMSE 10.389% to 3,293%, NRMSE 0.154% to 0.051%, NSE 0.918 to 0.992, and d 0.980 to 0.998. For biomass the R2 is 0.842, RMSE 0.111 t ha-1, NRMSE 0.017%, NSE 0.712, and d 0.937. For soybeans production the R2 is 0.999, RMSE 0.045  t.ha-1, NRMSE 0.018%,, NSE 0.908 and d 0.970. This study demonstrated that based on WUE, 55-65% FC irrigation is the most efficient application.

##plugins.themes.academic_pro.article.details##

Author Biographies

Farchan Mushaf Al Ramadhani, University of Pekalongan

Department of Agrotechnology

Cahyoadi Bowo, University of Jember

Department of Soil Science

Slameto Slameto, University of Jember

Department of Agronomy

How to Cite
Ramadhani, F. M. A., Bowo, C. ., & Slameto, S. (2023). The Use of Aquacrop Model for Soybean in Various Water Availability Within a Lysimeter System. Journal of Applied Agricultural Science and Technology, 7(4), 399-413. https://doi.org/10.55043/jaast.v7i4.153

References

  1. Abayechaw, D. (2021). Review on Decision Support System for Agrotechnology Transfer (DSSAT) Model. International Journal of Intelligent Information Systems, 10(6), 117–124. https://doi.org/10.11648/j.ijiis.20211006.13
  2. Adeboye, O. B., Schultz, B., Adeboye, A. P., Adekalu, K. O., & Osunbitan, J. A. (2021). Application of the AquaCrop model in decision support for optimization of nitrogen fertilizer and water productivity of soybeans. Information Processing in Agriculture, 8(3), 419–436. https://doi.org/10.1016/j.inpa.2020.10.002
  3. Adeboye, O. B., Schultz, B., Adekalu, K. O., & Prasad, K. (2017). Modelling of Response of the Growth and Yield of Soybean to Full and Deficit Irrigation by Using AquaCrop. Irrigation and Drainage, 66(2), 192–205. https://doi.org/10.1002/ird.2073
  4. Adeboye, O. B., Schultz, B., Adekalu, K. O., & Prasad, K. C. (2019). Performance evaluation of AquaCrop in simulating soil water storage, yield, and water productivity of rainfed soybeans (Glycine max L. merr) in Ile-Ife, Nigeria. Agricultural Water Management, 213, 1130–1146. https://doi.org/10.1016/j.agwat.2018.11.006
  5. Ali, M. H. (2010). Fundamentals of Irrigation and On-farm Water Management: Volume 1. Springer-Verlag. https://doi.org/10.1007/978-1-4419-6335-2
  6. Araya, A., Habtu, S., Hadgu, K. M., Kebede, A., & Dejene, T. (2010). Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare). Agricultural Water Management, 97(11), 1838–1846. https://doi.org/10.1016/j.agwat.2010.06.021
  7. Badan Pusat Statistik. (2022). Produksi Kedelai Menurut Provinsi (ton). Retrieved from https://www.bps.go.id/linkTableDinamis/view/id/871
  8. Baghel, L., Kataria, S., & Guruprasad, K. N. (2018). Effect of static magnetic field pretreatment on growth, photosynthetic performance and yield of soybean under water stress. Photosynthetica, 56(2), 718–730. https://doi.org/10.1007/s11099-017-0722-3
  9. Budiastuti, M. T. S., Purnomo, D., Supriyono, Pujiasmanto, B., & Setyaningrum, D. (2020). Effects of light intensity and co-inoculation of arbuscular mycorrhizal fungi and rhizobium on root growth and nodulation of Indigofera tinctoria. SAINS TANAH - Journal of Soil Science and Agroclimatology, 17(2), 94–99. https://doi.org/10.20961/STJSSA.V17I2.40065
  10. Canon Inc. (2015). Specifications (EOS M3). Retrieved from https://id.canon/id/support/6200266100
  11. Ferreira, T., & Rasband, W. (2012). ImageJ User Guide. IJ 1.46r. Retrieved from https://imagej.nih.gov/ij/docs/guide/
  12. Fu, Q., Yang, L., Li, H., Li, T., Liu, D., Ji, Y., Li, M., & Zhang, Y. (2019). Study on the optimization of dry land irrigation schedule in the downstream Songhua River Basin based on the SWAT model. Water (Switzerland), 11(6), 1–19. https://doi.org/10.3390/w11061147
  13. Geerts, S., Raes, D., & Garcia, M. (2010). Using AquaCrop to derive deficit irrigation schedules. Agricultural Water Management, 98(1), 213–216. https://doi.org/10.1016/j.agwat.2010.07.003
  14. Hanson, J. D., Rojas, K. W., & Shaffer, M. J. (1999). Calibrating the root zone water quality model. Agronomy Journal, 91(2), 171–177. https://doi.org/10.2134/agronj1999.00021962009100020002x
  15. Hsiao, T. C., Heng, L., Steduto, P., Rojas-Lara, B., Raes, D., & Fereres, E. (2009). Aquacrop-The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal, 101(3), 448–459. https://doi.org/10.2134/agronj2008.0218s
  16. Indonesian Agency for Agricultural Research and Development. (2017). Kedelai varietas Deja 2. Retrieved from https://www.litbang.pertanian.go.id/varietas/1234/
  17. Jamieson, P. D., Porter, J. R., & Wilson, D. R. (1991). A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Research, 27(4), 337–350. https://doi.org/10.1016/0378-4290(91)90040-3
  18. Jaybhay, S., Varghese, P., Taware, S. P., & Idhol, B. (2019). Response of soybean [Glycine max ( L .) Merrill] to irrigation at different growth stages. Agricultural Science Digest, 39(2), 132–135. https://doi.org/10.18805/ag.D-4932
  19. Kementerian Pertanian. (2020). Outlook Komoditas Pertanian Tanaman Pangan Kedelai. In Portal Epublikasi Pertanian Kementerian Pertanian Republik Indonesia. Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal Kementerian Pertanian. Retrieved from http://epublikasi.pertanian.go.id/arsip-outlook/81-outlook-tanaman-pangan/741-outlook-kedelai-2020
  20. Kidron, G. J., & Kronenfeld, R. (2017). Assessing the effect of micro-lysimeters on NRWI : Do micro-lysimeters adequately represent the water input of natural soil ? Journal of Hydrology, 548, 382–390. https://doi.org/10.1016/j.jhydrol.2017.03.005
  21. Kidron, G. J., & Kronenfeld, R. (2020). Catena Microlysimeters overestimate the amount of non-rainfall water – an experimental approach. Catena, 194(104691), 1–9. https://doi.org/10.1016/j.catena.2020.104691
  22. Krause, P., Boyle, D. P., & Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89–97. https://doi.org/10.5194/adgeo-5-89-2005
  23. Lovelli, S., Perniola, M., Ferrara, A., & Di Tommaso, T. (2007). Yield response factor to water (Ky) and water use efficiency of Carthamus tinctorius L. and Solanum melongena L. Agricultural Water Management, 92(1–2), 73–80. https://doi.org/10.1016/j.agwat.2007.05.005
  24. Lubis, P. A., Tyasmoro, S. Y., & Sudiarso. (2017). Pengaruh jenis dan ketebalan mulsa dalam mempertahankan kandungan air tanah dan dampaknya terhadap tanaman kedelai (Glycine max (L.)) di lahan kering. Jurnal Produksi Tanaman, 5(5), 791–798. http://protan.studentjournal.ub.ac.id/index.php/protan/article/view/444
  25. Ma, L., Ahuja, L. R., Saseendran, S. A., Malone, R. W., Green, T. R., Nolan, B. T., Bartling, P. N. S., Flerchinger, G. N., Boote, K. J., & Hoogenboom, G. (2011). A protocol for parameterization and calibration of RZWQM2 in field research. In Ahuja, L. R., & Ma, L. (Eds.), Methods of Introducing System Models into Agricultural Research (pp. 1–64). American Society of Agronomy, Inc. Crop Science Society of America, Inc. Soil Science Society of America, Inc. https://doi.org/10.2134/advagricsystmodel2.c1
  26. Mibulo, T., & Kiggundu, N. (2018). Evaluation of FAO AquaCrop Model for Simulating Rainfed Maize Growth and Yields in Uganda. Agronomy, 8(11), 1–10. https://doi.org/10.3390/agronomy8110238
  27. Mohammad, S., Tiwari, H. L., & Balvanshi, A. (2018). Evaluation of yield of soybean crop using AquaCrop model for Ujjain District. International Journal of Recent Scientific Research, 9(5), 26968–26972. https://recentscientific.com/evaluation-yield-soybean-crop-using-aquacrop-model-ujjain-district
  28. Molle, B. A., & Larasati, A. F. (2020). Analisis Anomali Pola Curah Hujan Bulanan Tahun 2019 terhadap Normal Curah Hujan (30 Tahun) di Kota Manado dan sekitarnya. Jurnal Meteorologi Klimatologi Dan Geofisika, 7(1), 1–8. https://doi.org/10.36754/jmkg.v7i1.181 https://jurnal.stmkg.ac.id/index.php/jmkg/article/view/181
  29. Moriasi, D. N., Arnold, J. G., Liew, M. W. Van, Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers, 50(3), 885–900. https://doi.org/10.13031/2013.23153
  30. Morsy, M., El Afandi, G., & Naif, E. (2018). Cropsyst simulation and response of some wheat cultivars to late season drought. Italian Journal of Agrometeorology, 2018(1), 15–24. https://doi.org/10.19199/2018.1.2038-5625.015
  31. Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10, 282–290. https://doi.org/10.1016/0022-1694(70)90255-6
  32. Paredes, P., Wei, Z., Liu, Y., Xu, D., Xin, Y., Zhang, B., & Pereira, L. S. (2015). Performance assessment of the FAO AquaCrop model for soil water, soil evaporation, biomass and yield of soybeans in North China Plain. Agricultural Water Management, 152, 57–71. https://doi.org/10.1016/j.agwat.2014.12.007
  33. Pawar, G. S., Kale, M. U., & Lokhande, J. N. (2017). Response of AquaCrop Model to Different Irrigation Schedules for Irrigated Cabbage. Agricultural Research, 6(1), 73–81. https://doi.org/10.1007/s40003-016-0238-2
  34. Perdanatika, A., Suntoro, S., & Pardjanto, P. (2018). The Effects of Rice Husk Ash and Dolomite on Soybean Yield at Latosol Soil. SAINS TANAH - Journal of Soil Science and Agroclimatology, 15(1), 29. https://doi.org/10.15608/stjssa.v15i1.21620
  35. Raes, D. (2017). Book I: Understanding AquaCrop. In D. Raes (Ed.), AquaCrop training handbooks (pp. 1–52). Food and Agriculture Organization of the United Nations.
  36. Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2009). Aquacrop-The FAO crop model to simulate yield response to water: II. main algorithms and software description. Agronomy Journal, 101(3), 438–447. https://doi.org/10.2134/agronj2008.0140s
  37. Rockström, J., & Barron, J. (2007). Water productivity in rainfed systems: Overview of challenges and analysis of opportunities in water scarcity prone savannahs. Irrigation Science, 25(3), 299–311. https://doi.org/10.1007/s00271-007-0062-3
  38. Saseendran, S. A., Nielsen, D. C., Ma, L., Ahuja, L. R., & Vigil, M. F. (2010). Simulating alternative dryland rotational cropping systems in the Central Great Plains with RZWQM2. Agronomy Journal, 102(5), 1521–1534. https://doi.org/10.2134/agronj2010.0141
  39. Shrestha, N., Raes, D., Vanuytrecht, E., & Sah, S. K. (2013). Cereal yield stabilization in Terai (Nepal) by water and soil fertility management modeling. Agricultural Water Management2, 122, 53–62. https://doi.org/10.1016/j.agwat.2013.03.003
  40. Silva, V. de P. R. da, Silva, R. A. e, Maciel, G. F., Braga, C. C., Júnior, J. L. C. da S., Souza, E. P. de, Almeida, R. S. R., Silva, M. T., & Holanda, R. M. de. (2018). Calibration and validation of the AquaCrop model for the soybean crop grown under different levels of irrigation in the Motopiba region , Brazil. Ciência Rural, 48(1), 1–8. https://doi.org/10.1590/0103-8478cr20161118
  41. Steduto, P., Raes, D., Hsiao, T. C., Fereres, E., Heng, L. K., Howell, T. A., Evett, S. R., Rojas-Lara, B. A., Farahani, H. J., Izzi, G., Oweis, T. Y., Wani, S. P., Hoogeveen, J., & Geerts, S. (2009). Concepts and Applications of AquaCrop: The FAO Crop Water Productivity Model. In: Cao, W., White, J.W., Wang, E. (eds). Crop Modeling and Decision Support. (pp. 175–191). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01132-0_19
  42. Tukidin. (2010). Karakter Curah Hujan Di Indonesia. Jurnal Geografi, 7(2), 136–145. https://doi.org/10.15294/jg.v7i2.84 https://journal.unnes.ac.id/nju/index.php/JG/article/view/84
  43. Vanuytrecht, E., Raes, D., Willems, P., & Semenov, M. A. (2014). Comparing climate change impacts on cereals based on CMIP3 and EU-ENSEMBLES climate scenarios. Agricultural and Forest Meteorology, 195–196, 12–13. https://doi.org/10.1016/j.agrformet.2014.04.017
  44. Wang, E., Robertson, M. J., Hammer, G. L., Carberry, P. S., Holzworth, D., Meinke, H., Chapman, S. C., Hargreaves, J. N. G., Huth, N. I., & McLean, G. (2002). Development of a generic crop model template in the cropping system model APSIM. European Journal of Agronomy, 18(1–2), 121–140. https://doi.org/10.1016/S1161-0301(02)00100-4
  45. Xiong, Y., West, C. P., Brown, C. P., & Green, P. E. (2019). Digital image analysis of old world bluestem cover to estimate canopy development. Agronomy Journal, 111(3), 1247–1253. https://doi.org/10.2134/agronj2018.08.0502