Flood Modelling of Premulung River, Bengawan Solo

##plugins.themes.academic_pro.article.main##

Ferdi Pangestu
Arno Adi Kuntoro
Eko Winar Irianto

Abstract

Premulung River or commonly known as Kali Premulung is one of many branches of Bengawan Solo River in its upstream area. This river pass through one of the most historical cities in Central Java, Surakarta. The overcapacity of this river leads to flood event that has a negative impact on humans. The purpose of this research is to analyze the Premulung River capacity and simulate the flood caused by rainfall design. The hydrological matter was analyzed using Hydrognomon and HEC-HMS while flood modelling was analyzed using HEC-RAS software one- and two-dimension (1D & 2D) simulation. Model calibrations were carried out based on historical flood events (depth, duration, and area of inundation) and local interview due to data limitation. Based on the simulation, the flood modelling shows that the current capacity of Premulung River cannot accommodate its peak discharge for two (Q2) and twenty years (Q20) return period flood. There are two main spots identified flooded due to Q2 flood with depth varies from 40 to 80 cm and duration from 4 hour to 7 hour. For Q20 flood, there are also two same spots identified flooded with depth varies from 1.2 m to 1.8 m and duration from 6 hour to 9 hour. The result of this study can be a reference for flood dike design in the future which still require further detailed investigation.

##plugins.themes.academic_pro.article.details##

Author Biographies

Ferdi Pangestu, Institut Teknologi Bandung

Department of Water Resources Management

Arno Adi Kuntoro, Institut Teknologi Bandung

Department of Water Resources Management

How to Cite
1.
Pangestu F, Kuntoro AA, Irianto EW. Flood Modelling of Premulung River, Bengawan Solo. J. appl. agricultural sci. technol. [Internet]. 2024Feb.24 [cited 2024Oct.5];8(1):12-28. Available from: https://jaast.org/index.php/jaast/article/view/183

References

  1. Andreas, H., Abidin, H. Z., Gumilar, I., Sidiq, T. P, Sarsito, D. A., & Pradipta, D. (2018). Insight into the correlation between land subsidence and the floods in regions of Indonesia. In do Carmo, J. S. A. (Ed). Natural Hazards - Risk Assessment and Vulnerability Reduction. IntechOpen, (pp.). https://doi.org/10.5772/INTECHOPEN.80263.
  2. Asdak, C., Supian, S., & Subiyanto. (2018). Watershed management strategies for flood mitigation: a case study of Jakarta’s flooding. Weather and Climate Extremes, 21, 117–122. https://doi.org/10.1016/j.wace.2018.08.002.
  3. BPBD Kota Surakarta. (2021). Peta Rawan Bencana Kota Surakarta. Retrieved from https://bpbd.surakarta.go.id/frontend/photos?date=2021-12-08&id=191
  4. BPSDA Bengawan Solo. (2017). Daerah Aliran Sungai Premulung. Retrieved from https://bpusdataru-bs.jatengprov.go.id/index.php?do=das_premulung
  5. Brunner, G. W. (1995). HEC-RAS river analysis system. In: Hydraulic reference manual. Version 1.0. https://www.hec.usace.army.mil/confluence/rasdocs/rasum/latest
  6. Brunner, G. W. (2002). Hec-ras (river analysis system). In: North American Water and Environment Congress & Destructive Water, 3782–3787. https://www.hec.usace.army.mil/confluence/rasdocs/rasum/latest
  7. Chow, V. T. (1959). Open Channels Hydraulics. New York: McGraw Hill
  8. Chu, X., Asce, A. M., & Steinman, A. (2009). Event and continuous hydrologic modeling with HEC-HMS. Journal of Irrigation and Drainage Engineering, 135(1), 119–124.. https://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9437(2009)135:1(119)
  9. Dingman, S. L. (2015). Physical hydrology. Waveland press.
  10. Du, S., Shi, P., van Rompaey, A., & Wen, J. (2015). Quantifying the impact of impervious surface location on flood peak discharge in urban areas. Natural Hazards, 76(3), 1457–1471. https://doi.org/10.1007/S11069-014-1463-2.
  11. Farid, M., Pusparani, H. H., Kusuma, M. S. B., & Natasaputra, S. (2017). Study on effectiveness of flood control based on risk level: case study of Kampung Melayu Village and Bukit Duri Village. In: MATEC Web of Conferences, 101, 1-6. https://doi.org/10.1051/matecconf/201710105003
  12. Feng, B., Zhang, Y., & Bourke, R. (2021). Urbanization impacts on flood risks based on urban growth data and coupled flood models. Natural Hazards, 106(1), 613–627. https://doi.org/10.1007/s11069-020-04480-0.
  13. Fuchs, R. J. (2010). Cities at Risk: Asia’s Coastal Cities in an Age of Climate Change. https://scholarspace.manoa.hawaii.edu/bitstreams/6991a3d5-adcb-4ad3-9347-12970bc54f62/download
  14. Gunnell, K., Mulligan, M., Francis, R. A., Hole, D. G. (2019). Evaluating natural infrastructure for flood management within the watersheds of selected global cities. Science of The Total Environment, 670, 411–424. https://doi.org/10.1016/J.SCITOTENV.2019.03.212.
  15. Hadiani, R. R., Rofi’atin, T., Suryandari, E. S., & Limantara, L. M. (2020). Analysis of drainage capacity as a flood control effects in laweyan sub-district. International Journal of GEOMATE, 19(74), 222–228. https://doi.org/10.21660/2020.74.24829
  16. He, L., & Wilkerson, G. V. (2011). Improved Bankfull Channel Geometry Prediction Using Two‐Year Return‐Period Discharge 1. JAWRA Journal of the American Water Resources Association, 47(6), 1298-1316. https://doi.org/10.1111/j.1752-1688.2011.00567.x
  17. Indonesian National Board for Disaster Management – BNPB. (2022, 4 Desember 2022). Disaster Events in 2021 - Kejadian Bencana Tahun 2021. Retrieved from https://www.bnpb.go.id/infografis/kejadian-bencana-tahun-2021.
  18. Jones, P. (2017) . Formalizing the informal: understanding the position of informal settlements and slums in sustainable urbanization policies and strategies in bandung, indonesia. Sustainability 9, 1436. https://doi.org/10.3390/su9081436.
  19. Kundzewicz, Z. W., Budhakooncharoen, S., Bronstert, A., Hoff, H., Lettenmaier, D., Menzel, L., & Schulze, R. (2003). Coping with variability and change: floods and droughts. Natural Resources Forum, 26(4), 263–274. https://doi.org/10.1111/1477-8947.00029.
  20. Li, B., Hou, J., Li, D., Yang, D., Han, H., Bi, X., Wang, X., Hinkelmann, R., & Xia, J. (2021). Application of LiDAR UAV for High-Resolution Flood Modelling. Water Resources Management, 35(5), 1433–1447. https://doi.org/10.1007/s11269-021-02783-w
  21. Lin, E., Shaad, K., & Girot, C. (2016). Developing river rehabilitation scenarios by integrating landscape and hydrodynamic modeling for the Ciliwung River in Jakarta, Indonesia. Sustainable Cities and Society, 20, 180–198. https://doi.org/10.1016/J.SCS.2015.09.011.
  22. Malmqvist, B., & Rundle, S. (2002). Threats to the running water ecosystems of the world. Environmental Conservation, 29(2), 134–153. https://doi.org/10.1017/S0376892902000097
  23. Marfai, M. A., & King, L. (2008). Coastal flood management in Semarang, Indonesia. Environmental Geology, 55, 1507–1518. https://doi.org/10.1007/s00254-007-1101-3.
  24. Marfai, M. A., Sekaranom, A. B., & Ward, P. (2015). Community responses and adaptation strategies toward flood hazard in Jakarta, Indonesia. Natural Hazards, 75, 1127–1144. https://doi.org/10.1007/s11069-014-1365-3.
  25. Merten, J., Nielsen, J. Ø., Rosyani, Soetarto, E., & Faust, H. (2021). From rising water to floods: disentangling the production of flooding as a hazard in Sumatra, Indonesia. Geoforum, 118, 56–65. https://doi.org/10.1016/J.GEOFORUM.2020.11.005.
  26. Minarno, P. E., Suprapto, A., & Harsono. (2022). Pollution load capacity of the Larangan/Premulung River Sukoharjo Regency, Central Java Province, Indonesia in 2020. IOP Conference Series: Earth and Environmental Science, 1016(1), 0–7. https://doi.org/10.1088/1755-1315/1016/1/012029
  27. Moe, I. R., Kure, S., Januriyadi, N. F., Farid, M., Udo, K., Kazama, S., & Koshimura, S. (2017). Future projection of flood inundation considering land-use changes and land subsidence in Jakarta, Indonesia. Hydrological Research Letters, 11, 99–105. https://www.jstage.jst.go.jp/article/hrl/11/2/11_99/_pdf/-char/ja
  28. Molya, R., Hadiani, R. R. R, & Muttaqien, A. Y. (2023). Infiltration Wells as an Alternative Eco Drainage System a Case Study in Mangkubumen Surakarta. Proceedings of the 5th International Conference on Rehabilitation and Maintenance in Civil Engineering, 953-964. https://doi.org/10.1007/978-981-16-9348-9_84
  29. Muller, M. (2007). Adapting to climate change: water management for urban resilience. Environment and urbanization, 19(1), 99–113. https://doi.org/10.1177/0956247807076726
  30. Muñoz, D. F., Yin, D., Bakhtyar, R., Moftakhari, H., Xue, Z., Mandli, K., Ferreira, C. (2022). Inter-model comparison of Delft3D-FM and 2D HEC-RAS for Total water level prediction in coastal to inland transition zones. JAWRA Journal of the American Water Resources Association, 58(1), 34–49. https://doi.org/10.1111/1752-1688.12952.
  31. Nachtergaele, F., Velthuizen, H. v., Verelst, L., Batjes, N. H, Dijkshoorn, K., Engelen, V. W. P. v., ..., & Wiberg, D. (2010). The harmonized world soil database Food and Agriculture Organization of the United Nations. In: Science, Soil Solutions for a Changing World. Retrieved from https://www.researchgate.net/publication/228068266_The_Harmonized_World_Soil_Database
  32. Nkwunonwo, U. C., Whitworth, M., & Baily, B. (2020). A review of the current status of flood modelling for urban flood risk management in the developing countries. Scientific African, 7, e00269. https://doi.org/10.1016/J.SCIAF.2020.E00269.
  33. Novani, S., Putro, U. S., & Hermawan, P. (2014). An Application of Soft System Methodology in Batik Industrial Cluster Solo by Using Service System Science Perspective. Procedia - Social and Behavioral Sciences, 115(Iicies 2013), 324–331. https://doi.org/10.1016/j.sbspro.2014.02.439
  34. Osti, R., & Nakasu, T. (2016). Lessons learned from southern and eastern Asian urban floods: from a local perspective. Journal Flood Risk Management, 9, 22–35. https://doi.org/10.1111/JFR3.12107.
  35. Ponce, V. M. & Hawkins, R. H. (1996). Runoff curve number: has it reached maturity?. Journal of Hydrologic Engineering ASCE, 1, 11–19. https://doi.org/10.1061/(ASCE)1084-0699(1996)1:1(11)
  36. Pradana, N. L. J., Qomariyah, S., & Suyanto, S. (2017). Analisis Perencanaan Lahan Kolam Retensi Di Kelurahan Tipes Kota Surakarta. Matriks Teknik Sipil, September, 1147–1153. https://103.23.224.239/matriks/article/view/36719
  37. PUPR. (2015). Peraturan Menteri Pekerjaan Umum dan Perumahan Rakyat Nomor 28/PRT/M/2015 Tahun 2015 tentang Penetapan Garis Sempadan Sungai dan Garis Sempadan Danau. https://sda.pu.go.id/assets/files/Permen%20Nomor%2028%20Tentang%20Penetapan%20Garis%20Sempadan%20Sungai,%20dan%20Garis%20Sempadan%20Danau.pdf
  38. Rezagama, A., Sutrisno, E., & Handayani, D. S. (2020). Pollution Model of Batik and Domestic Wastewater on River Water Quality. IOP Conference Series: Earth and Environmental Science, 448(1). https://doi.org/10.1088/1755-1315/448/1/012074
  39. Rohmat, F. I. W., Sa'adi, Z., Stamataki, I., Kuntoro, A. A., Farid, M., & Suwarman, R. (2022). Flood modeling and baseline study in urban and high population environment: A case study of Majalaya, Indonesia. Urban Climate, 46. https://doi.org/10.1016/j.uclim.2022.101332
  40. Romali, N. S., Yusop, Z., & Ismail, A. Z. (2018). Hydrological modelling using HEC-HMS for flood risk assessment of Segamat Town, Malaysia. IOP Conference Series: Materials Science and Engineering, 318, 012029. https://doi.org/10.1088/1757-899X/318/1/012029.
  41. Schneider, P., & Xhafa, F. (2022). Anomaly detection: Concepts and methods (F. X. Patrick Schneider (ed.)). Academic Press.
  42. Sheng, J., & Wilson, J. P. (2008). Watershed urbanization and changing flood behavior across the los angeles metropolitan region. Nat. Hazards, 48(1), 41–57. https:// doi.org/10.1007/S11069-008-9241-7.
  43. Smith, K. (2013). Environmental hazards: assessing risk and reducing disaster. London, Routledge. https://doi.org/10.4324/9780203805305.
  44. Stamataki, I., & Kjeldsen, T. R. (2021). Reconstructing the peak flow of historical flood events using a hydraulic model: the city of Bath, United Kingdom. Journal of Flood Risk Management, 14(3), e12719. https://doi.org/10.1111/JFR3.12719.
  45. Tingsanchali, T. (2012). Urban flood disaster management. Procedia Engineering. 32, 25–37. https://doi.org/10.1016/J.PROENG.2012.01.1233.
  46. UNICEF, (2016). Equity in Public Financing of Water, Sanitation and Hygiene (WASH) INDONESIA, UNICEF East Asia and Pacific Regional Office. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjOq7rezIOAAxX2xjgGHc_rAu0QFnoECBcQAQ&url=https%3A%2F%2Fwww.unicef.org%2Feap%2Fmedia%2F1126%2Ffile%2FEquity%2520in%2520Public%2520Financing%2520of%2520Water%2C%2520Sanitation%2520and%2520Hygiene%2520(WASH)%2520.pdf&usg=AOvVaw2Lm_YFLBQbaa4Y6ZflQLt0&opi=89978449
  47. Utomo, E. S., Hadiani, R. R. R., & Suryandari, E. S. (2019). Analisis Banjir Dan Pemetaan Kawasan Terdampak Banjir Di Kelurahan Laweyan, Kota Surakarta. Matriks Teknik Sipil, 7(3). https://doi.org/10.20961/mateksi.v7i3.36489
  48. Voorst, R. V. (2016a). Natural hazards, risk and vulnelrability: floods and slum lifel in Indonelsia. In: Natural Hazards, Risk and Vulnelrability: Floods and Slum Lifel in Indonelsia. Routledge. https://doi.org/10.4324/9781315716411/NATURAL-HAZARDS-RISK-VULNElRABILITY-ROANNEl-VAN-VOORST.
  49. Voorst, R. V. (2016b). Formal and informal flood govelrnancel in Jakarta, Indonelsia. Habitat International, 52, 5–10. https://doi.org/10.1016/J.HABITATINT.2015.08.023
  50. Waskito, T. N., Bisri, M., Limantara, L. M., & Soetopo, W. (2022). Hydrological Prediction For Mapping The Potency Of Break in The Saguling Dam, West Java Province, Indonesia. Journal of Southwest Jiaotong University, 57, 73. https://doi.org/10.35741/issn.0258-2724.57.4.6
  51. Wedajo, G. K. (2017). LiDAR DEM Data for Flood Mapping and Assessment; Opportunities and Challenges: A Review. Journal of Remote Sensing & GIS, 06(04), 2015–2018. https://doi.org/10.4172/2469-4134.1000211