Identification of Availability and Lignocellulosic Properties in Coconut Dregs Waste

##plugins.themes.academic_pro.article.main##

Wenny Surya Murtius
Bambang Dwi Argo
Irnia Nurika
Sukardi Sukardi

Abstract

Agricultural waste, including coconut pulp, contains lignocellulose and is a very important, renewable and sustainable industrial raw material. Many of the food, textile, pharmaceutical, paint and resin, agrochemical, oil processing, and other sectors utilize lignocellulosic derivatives. The objectives of this study were to determine the availability of coconut pulp in Padang City-West Sumatra, analyse the lignocellulosic components contained and cell surface morphology, and observe the chemical elements in coconut pulp waste. An exploratory approach was used in this study to achieve these objectives. The results showed that there were 98 coconut milk entrepreneurs spread across traditional markets in Padang City, West Sumatra. Every day the coconut milk squeeze business examined produces ± 1.18 tonnes of coconut pulp. Coconut waste also contains 47.18% cellulose, 10.58% lignin, and 12.10% hemicellulose. Based on the XRD results, the crystal size of coconut pulp obtained from XRD observation is 11.8 nm.

##plugins.themes.academic_pro.article.details##

Author Biographies

Wenny Surya Murtius, University of Andalas

Department of Agricultural Industrial Technology

Bambang Dwi Argo, University of Brawijaya

Department of Agricultural and Biosystem Engineering

Irnia Nurika, University of Brawijaya

Department of Agricultural Industrial Technology

Sukardi Sukardi, University of Brawijaya

Department of Agricultural Industrial Technology

How to Cite
Murtius, W. S., Argo, B. D. ., Nurika, I. ., & Sukardi, S. (2024). Identification of Availability and Lignocellulosic Properties in Coconut Dregs Waste. Journal of Applied Agricultural Science and Technology, 8(1), 92-105. https://doi.org/10.55043/jaast.v8i1.248

References

  1. Barlina, R. (2015). Ekstrak Galaktomanan pada Daging Buah Kelapa dan Ampasnya serta Manfaatnya untuk Pangan. Perspektif, 14(1), 37–49. https://repository.pertanian.go.id/server/api/core/bitstreams/930c1f17-97dd-4450-ba69-1bb0e46d11b4/content
  2. Barlina, R., Dewandari, K. T., Mulyawanti, I., & Herawan, T. (2022). Chemistry and composition of coconut oil and its biological activities. Multiple Biological Activities of Unconventional Seed Oils, 383–395. https://doi.org/10.1016/B978-0-12-824135-6.00025-8
  3. Bhunia, A. K., Mondal, D., Parui, S. M., & Mondal, A. K. (2023). Characterization of a new natural novel lignocellulose fiber resource from the stem of Cyperus platystylis R.Br. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-35888-w
  4. Budiman, I., Hermawan, D., Febrianto, F., Subyakto, & Pari, G. (2019). Optimasi Aktivasi Arang Aktif dari Arang Hidro Tempurung Buah Kelapa Sawit Menggunakan Metodologi Permukaan Respon. J. Ilmu Teknol. Kayu Tropis, 17(1). https://www.researchgate.net/publication/335879119
  5. Cardoso, M. S., & Gonçalez, J. C. (2016). Aproveitamento Da Casca Do Coco-Verde (Cocos Nucifera L.) Para Produção De Polpa Celulósica. Ciência Florestal, 26(1), 321-330. https://doi.org/10.5902/1980509821126
  6. Carpita, N. C., & McCann, M. C. (2020). Redesigning plant cell walls for the biomass-based bioeconomy. Journal of Biological Chemistry, 295(44), 15144–15157. https://doi.org/10.1074/JBC.REV120.014561
  7. Hendryadi. (2021). Pupolasi, Sampel, Variabel. Pekalongan, Indonesia. Penerbit NEM.
  8. Erminawati, E., Sidik, W. A., Listanti, R., Mela, E., & Sulistyawati, M. (2017). Karakteristik Fungsional Tepung Ampas Kelapa Fermentasi. Prosiding Seminar Nasional LPPM Unsoed, 7(1). http://jurnal.lppm.unsoed.ac.id/ojs/index.php/Prosiding/article/download/470/390
  9. Gonçalves, F. A., Ruiz, H. A., Santos, E. S., Teixeira, J. A., & Macêdo, G. R. (2019). Valorization, Comparison and Characterization of Coconuts Waste and Cactus in a Biorefinery Context Using NaClO2–C2H4O2 and Sequential NaClO2–C2H4O2/Autohydrolysis Pretreatment. Waste and Biomass Valorization, 10, 2249-2262. https://doi.org/10.1007/S12649-018-0229-6
  10. Habibunnisa, S., Nerella, R., Madduru, S. C., & Reddy S, R. G. (2022). Physicochemical characterization of lignocellulose fibers obtained from seedpods of Wrightia tinctoria plant. AIMS Materials Science, 9(1), 135–149. https://doi.org/10.3934/MATERSCI.2022009
  11. Jamaluddin. (2016). Fisika Material (X-Ray Diffractions). Retrieved from https://www.academia.edu/9445418/makalah_fisika_material_X_RD_X_Ray_Diffractions_Pyogram_Studi_Pendidikan_Fisika_Fakultas_Keguruan_Den_Ilmu_Pendidikan_Universitas_Haluoleo
  12. Moghaddam, M. K. (2023). Morphologies and properties of lignocellulose fiber extracted from Typha leaves with potential for composite applications. Journal of the Textile Institute. https://doi.org/10.1080/00405000.2023.2200316
  13. Leesing, R., Somdee, T., Siwina, S., Ngernyen, Y., & Fiala, K. (2022). Production of 2G and 3G biodiesel, yeast oil, and sulfonated carbon catalyst from waste coconut meal: An integrated cascade biorefinery approach. Renewable Energy, 199, 1093–1104. https://doi.org/10.1016/j.renene.2022.09.052
  14. Lu, X., Li, F., Zhou, X., Hu, J., & Liu, P. (2022). Biomass, lignocellulolytic enzyme production and lignocellulose degradation patterns by Auricularia auricula during solid state fermentation of corn stalk residues under different pretreatments. Food Chemistry, 384. https://doi.org/10.1016/j.foodchem.2022.132622
  15. Maceda, A., Soto-Hernández, M., Peña-Valdivia, C. B., Trejo, C., & Terrazas, T. (2022). Characterization of lignocellulose of Opuntia (Cactaceae) species using FTIR spectroscopy: possible candidates for renewable raw material. Biomass Conversion and Biorefinery, 12, 5165-5174. https://doi.org/10.1007/s13399-020-00948-y/Published
  16. Mariano, A. P. B., Unpaprom, Y., & Ramaraj, R. (2020). Hydrothermal pretreatment and acid hydrolysis of coconut pulp residue for fermentable sugar production. Food and Bioproducts Processing, 122, 31–40. https://doi.org/10.1016/j.fbp.2020.04.003
  17. Menon, V., & Rao, M. (2012). Trends in bioconversion of lignocellulose: biofuels, platform chemicals &biorefinery concept. Progress in Energy and Combustion Science,38, 522-550. https://www.sciencedirect.com/science/article/pii/S036012851200007X
  18. Nurika, I., Shabrina, E. N., Azizah, N., Suhartini, S., Bugg, T. D. H. H., & Barker, G. C. (2022). Application of ligninolytic bacteria to the enhancement of lignocellulose breakdown and methane production from oil palm empty fruit bunches (OPEFB). Bioresource Technology Reports, 17, 100951. https://doi.org/10.1016/j.biteb.2022.100951
  19. Nurika, I., Suhartini, S., & Barker, G. C. (2020). Biotransformation of Tropical Lignocellulosic Feedstock Using the Brown rot Fungus Serpula lacrymans. Waste and Biomass Valorization, 11(6), 2689–2700. https://doi.org/10.1007/s12649-019-00581-5
  20. Pancholi, M. J., Khristi, A., Athira, K. M., & Bagchi, D. (2023). Comparative Analysis of Lignocellulose Agricultural Waste and Pre-treatment Conditions with FTIR and Machine Learning Modeling. Bioenergy Research, 16(1), 123–137. https://doi.org/10.1007/s12155-022-10444-y
  21. Peleteiro, S., Santos, V., & Parajó, J. C. (2016). Furfural production in biphasic media using an acidic ionic liquid as a catalyst. Carbohydrate Polymers, 153, 421–428. https://doi.org/10.1016/j.carbpol.2016.07.093
  22. Pirah, S., Wang, X., Javed, M., Simair, K., Wang, B., Sui, X., & Lu, C. (2022). Lignocellulose Extraction from Sisal Fiber and Its Use in Green Emulsions: A Novel Method. Polymers, 14(11), 2299. https://doi.org/10.3390/polym14112299
  23. Pratama, J. H., Rohmah, R. L., Amalia, A., & Saraswati, T. E. (2019). Isolasi Mikroselulosa dari Limbah Eceng Gondok (Eichornia crassipes) dengan Metode Bleaching-Alkalinasi. ALCHEMY Jurnal Penelitian Kimia, 15(2), 239. https://doi.org/10.20961/alchemy.15.2.30862.239-250
  24. Raj, T., Chandrasekhar, K., Kumar, A. N., & Kim, S.-H. (2022). Lignocellulosic biomass as renewable feedstock for biodegradable and recyclable plastics production: A sustainable approach. Renewable and Sustainable Energy Reviews, 158, 112130. https://doi.org/https://doi.org/10.1016/j.rser.2022.112130
  25. Syahputri, N. F., & Faridah, A. (2023). Analisa Sensori Tepung Panir dari Ampas Kelapa dengan Teknik Pengeringan Berbeda. Jurnal Pendidikan Tata Boga Dan Teknologi, 4(2), 301-309. https://doi.org/10.24036/jptbt.v4i2.8552
  26. Tanasă, F., Teacă, C. A., & Nechifor, M. (2020). Lignocellulosic waste materials for industrial water purification. Sustainable Green Chemical Processes and their Allied Applications, 381-407. https://doi.org/10.1007/978-3-030-42284-4_14
  27. Teixeira, J. N., Silva, D. W., Vilela, A. P., Junior, H. S., Vaz, L. E. V. S. B., & Mendes, R. F. (2020). Lignocellulosic materials for fiber cement production. Waste and Biomass Valorization, 11, 2193-2200. https://doi.org/10.1007/s12649-018-0536-y
  28. Vydrina, I., Malkov, A., Vashukova, K., Tyshkunova, I., Mayer, L., Faleva, A., Shestakov, S., Novozhilov, E., & Chukhchin, D. (2023). A new method for determination of lignocellulose crystallinity from XRD data using NMR calibration. Carbohydrate Polymer Technologies and Applications, 5. https://doi.org/10.1016/j.carpta.2023.100305
  29. Wu, Z., Peng, K., Zhang, Y., Wang, M., Yong, C., Chen, L., Qu, P., Huang, H., Sun, E., & Pan, M. (2022). Lignocellulose dissociation with biological pretreatment towards the biochemical platform: A review. Materials Today Bio, 100445. https://doi.org/10.1016/j.mtbio.2022.100445
  30. Xia, J., Liu, Z., Chen, Y., Cao, Y., & Wang, Z. (2019). Effect of lignin on the performance of biodegradable cellulose aerogels made from wheat straw pulp-LiCl/DMSO solution. Cellulose, 27, 879-894. https://doi.org/10.1007/s10570-019-02826-x
  31. Zhang, H., Li, Z., Zhang, H., Li, Y., Wang, F., Xie, H., Su, L., & Song, A. (2022). Biodegradation of Gramineous Lignocellulose by Locusta migratoria manilensis (Orthoptera: Acridoidea). Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/FBIOE.2022.943692
  32. Zhong, R., Cui, D., & Ye, Z. H. (2019). Secondary cell wall biosynthesis. New Phytologist, 221(4), 1703–1723. https://doi.org/10.1111/nph.15537