Identification of Availability and Lignocellulosic Properties in Coconut Dregs Waste
##plugins.themes.academic_pro.article.main##
Abstract
Agricultural waste, including coconut pulp, contains lignocellulose and is a very important, renewable and sustainable industrial raw material. Many of the food, textile, pharmaceutical, paint and resin, agrochemical, oil processing, and other sectors utilize lignocellulosic derivatives. The objectives of this study were to determine the availability of coconut pulp in Padang City-West Sumatra, analyse the lignocellulosic components contained and cell surface morphology, and observe the chemical elements in coconut pulp waste. An exploratory approach was used in this study to achieve these objectives. The results showed that there were 98 coconut milk entrepreneurs spread across traditional markets in Padang City, West Sumatra. Every day the coconut milk squeeze business examined produces ± 1.18 tonnes of coconut pulp. Coconut waste also contains 47.18% cellulose, 10.58% lignin, and 12.10% hemicellulose. Based on the XRD results, the crystal size of coconut pulp obtained from XRD observation is 11.8 nm.
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Barlina, R. (2015). Ekstrak Galaktomanan pada Daging Buah Kelapa dan Ampasnya serta Manfaatnya untuk Pangan. Perspektif, 14(1), 37–49. https://repository.pertanian.go.id/server/api/core/bitstreams/930c1f17-97dd-4450-ba69-1bb0e46d11b4/content
- Barlina, R., Dewandari, K. T., Mulyawanti, I., & Herawan, T. (2022). Chemistry and composition of coconut oil and its biological activities. Multiple Biological Activities of Unconventional Seed Oils, 383–395. https://doi.org/10.1016/B978-0-12-824135-6.00025-8
- Bhunia, A. K., Mondal, D., Parui, S. M., & Mondal, A. K. (2023). Characterization of a new natural novel lignocellulose fiber resource from the stem of Cyperus platystylis R.Br. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-35888-w
- Budiman, I., Hermawan, D., Febrianto, F., Subyakto, & Pari, G. (2019). Optimasi Aktivasi Arang Aktif dari Arang Hidro Tempurung Buah Kelapa Sawit Menggunakan Metodologi Permukaan Respon. J. Ilmu Teknol. Kayu Tropis, 17(1). https://www.researchgate.net/publication/335879119
- Cardoso, M. S., & Gonçalez, J. C. (2016). Aproveitamento Da Casca Do Coco-Verde (Cocos Nucifera L.) Para Produção De Polpa Celulósica. Ciência Florestal, 26(1), 321-330. https://doi.org/10.5902/1980509821126
- Carpita, N. C., & McCann, M. C. (2020). Redesigning plant cell walls for the biomass-based bioeconomy. Journal of Biological Chemistry, 295(44), 15144–15157. https://doi.org/10.1074/JBC.REV120.014561
- Hendryadi. (2021). Pupolasi, Sampel, Variabel. Pekalongan, Indonesia. Penerbit NEM.
- Erminawati, E., Sidik, W. A., Listanti, R., Mela, E., & Sulistyawati, M. (2017). Karakteristik Fungsional Tepung Ampas Kelapa Fermentasi. Prosiding Seminar Nasional LPPM Unsoed, 7(1). http://jurnal.lppm.unsoed.ac.id/ojs/index.php/Prosiding/article/download/470/390
- Gonçalves, F. A., Ruiz, H. A., Santos, E. S., Teixeira, J. A., & Macêdo, G. R. (2019). Valorization, Comparison and Characterization of Coconuts Waste and Cactus in a Biorefinery Context Using NaClO2–C2H4O2 and Sequential NaClO2–C2H4O2/Autohydrolysis Pretreatment. Waste and Biomass Valorization, 10, 2249-2262. https://doi.org/10.1007/S12649-018-0229-6
- Habibunnisa, S., Nerella, R., Madduru, S. C., & Reddy S, R. G. (2022). Physicochemical characterization of lignocellulose fibers obtained from seedpods of Wrightia tinctoria plant. AIMS Materials Science, 9(1), 135–149. https://doi.org/10.3934/MATERSCI.2022009
- Jamaluddin. (2016). Fisika Material (X-Ray Diffractions). Retrieved from https://www.academia.edu/9445418/makalah_fisika_material_X_RD_X_Ray_Diffractions_Pyogram_Studi_Pendidikan_Fisika_Fakultas_Keguruan_Den_Ilmu_Pendidikan_Universitas_Haluoleo
- Moghaddam, M. K. (2023). Morphologies and properties of lignocellulose fiber extracted from Typha leaves with potential for composite applications. Journal of the Textile Institute. https://doi.org/10.1080/00405000.2023.2200316
- Leesing, R., Somdee, T., Siwina, S., Ngernyen, Y., & Fiala, K. (2022). Production of 2G and 3G biodiesel, yeast oil, and sulfonated carbon catalyst from waste coconut meal: An integrated cascade biorefinery approach. Renewable Energy, 199, 1093–1104. https://doi.org/10.1016/j.renene.2022.09.052
- Lu, X., Li, F., Zhou, X., Hu, J., & Liu, P. (2022). Biomass, lignocellulolytic enzyme production and lignocellulose degradation patterns by Auricularia auricula during solid state fermentation of corn stalk residues under different pretreatments. Food Chemistry, 384. https://doi.org/10.1016/j.foodchem.2022.132622
- Maceda, A., Soto-Hernández, M., Peña-Valdivia, C. B., Trejo, C., & Terrazas, T. (2022). Characterization of lignocellulose of Opuntia (Cactaceae) species using FTIR spectroscopy: possible candidates for renewable raw material. Biomass Conversion and Biorefinery, 12, 5165-5174. https://doi.org/10.1007/s13399-020-00948-y/Published
- Mariano, A. P. B., Unpaprom, Y., & Ramaraj, R. (2020). Hydrothermal pretreatment and acid hydrolysis of coconut pulp residue for fermentable sugar production. Food and Bioproducts Processing, 122, 31–40. https://doi.org/10.1016/j.fbp.2020.04.003
- Menon, V., & Rao, M. (2012). Trends in bioconversion of lignocellulose: biofuels, platform chemicals &biorefinery concept. Progress in Energy and Combustion Science,38, 522-550. https://www.sciencedirect.com/science/article/pii/S036012851200007X
- Nurika, I., Shabrina, E. N., Azizah, N., Suhartini, S., Bugg, T. D. H. H., & Barker, G. C. (2022). Application of ligninolytic bacteria to the enhancement of lignocellulose breakdown and methane production from oil palm empty fruit bunches (OPEFB). Bioresource Technology Reports, 17, 100951. https://doi.org/10.1016/j.biteb.2022.100951
- Nurika, I., Suhartini, S., & Barker, G. C. (2020). Biotransformation of Tropical Lignocellulosic Feedstock Using the Brown rot Fungus Serpula lacrymans. Waste and Biomass Valorization, 11(6), 2689–2700. https://doi.org/10.1007/s12649-019-00581-5
- Pancholi, M. J., Khristi, A., Athira, K. M., & Bagchi, D. (2023). Comparative Analysis of Lignocellulose Agricultural Waste and Pre-treatment Conditions with FTIR and Machine Learning Modeling. Bioenergy Research, 16(1), 123–137. https://doi.org/10.1007/s12155-022-10444-y
- Peleteiro, S., Santos, V., & Parajó, J. C. (2016). Furfural production in biphasic media using an acidic ionic liquid as a catalyst. Carbohydrate Polymers, 153, 421–428. https://doi.org/10.1016/j.carbpol.2016.07.093
- Pirah, S., Wang, X., Javed, M., Simair, K., Wang, B., Sui, X., & Lu, C. (2022). Lignocellulose Extraction from Sisal Fiber and Its Use in Green Emulsions: A Novel Method. Polymers, 14(11), 2299. https://doi.org/10.3390/polym14112299
- Pratama, J. H., Rohmah, R. L., Amalia, A., & Saraswati, T. E. (2019). Isolasi Mikroselulosa dari Limbah Eceng Gondok (Eichornia crassipes) dengan Metode Bleaching-Alkalinasi. ALCHEMY Jurnal Penelitian Kimia, 15(2), 239. https://doi.org/10.20961/alchemy.15.2.30862.239-250
- Raj, T., Chandrasekhar, K., Kumar, A. N., & Kim, S.-H. (2022). Lignocellulosic biomass as renewable feedstock for biodegradable and recyclable plastics production: A sustainable approach. Renewable and Sustainable Energy Reviews, 158, 112130. https://doi.org/https://doi.org/10.1016/j.rser.2022.112130
- Syahputri, N. F., & Faridah, A. (2023). Analisa Sensori Tepung Panir dari Ampas Kelapa dengan Teknik Pengeringan Berbeda. Jurnal Pendidikan Tata Boga Dan Teknologi, 4(2), 301-309. https://doi.org/10.24036/jptbt.v4i2.8552
- Tanasă, F., Teacă, C. A., & Nechifor, M. (2020). Lignocellulosic waste materials for industrial water purification. Sustainable Green Chemical Processes and their Allied Applications, 381-407. https://doi.org/10.1007/978-3-030-42284-4_14
- Teixeira, J. N., Silva, D. W., Vilela, A. P., Junior, H. S., Vaz, L. E. V. S. B., & Mendes, R. F. (2020). Lignocellulosic materials for fiber cement production. Waste and Biomass Valorization, 11, 2193-2200. https://doi.org/10.1007/s12649-018-0536-y
- Vydrina, I., Malkov, A., Vashukova, K., Tyshkunova, I., Mayer, L., Faleva, A., Shestakov, S., Novozhilov, E., & Chukhchin, D. (2023). A new method for determination of lignocellulose crystallinity from XRD data using NMR calibration. Carbohydrate Polymer Technologies and Applications, 5. https://doi.org/10.1016/j.carpta.2023.100305
- Wu, Z., Peng, K., Zhang, Y., Wang, M., Yong, C., Chen, L., Qu, P., Huang, H., Sun, E., & Pan, M. (2022). Lignocellulose dissociation with biological pretreatment towards the biochemical platform: A review. Materials Today Bio, 100445. https://doi.org/10.1016/j.mtbio.2022.100445
- Xia, J., Liu, Z., Chen, Y., Cao, Y., & Wang, Z. (2019). Effect of lignin on the performance of biodegradable cellulose aerogels made from wheat straw pulp-LiCl/DMSO solution. Cellulose, 27, 879-894. https://doi.org/10.1007/s10570-019-02826-x
- Zhang, H., Li, Z., Zhang, H., Li, Y., Wang, F., Xie, H., Su, L., & Song, A. (2022). Biodegradation of Gramineous Lignocellulose by Locusta migratoria manilensis (Orthoptera: Acridoidea). Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/FBIOE.2022.943692
- Zhong, R., Cui, D., & Ye, Z. H. (2019). Secondary cell wall biosynthesis. New Phytologist, 221(4), 1703–1723. https://doi.org/10.1111/nph.15537