Controlling Horn Beetles Using Pineapple Fruits Trap in Palm Oil Plant

##plugins.themes.academic_pro.article.main##

Lita Nasution
Rahmad Syukur Siregar
Makhrani Sari Ginting

Abstract

Chemical insecticides are often used to control palm oil pests due to their effectiveness and rapid effects. However, these insecticides leave residues in palm oil, leading to the presence of harmful chemicals that damage the agricultural environment. This has led to the use of various alternatives, such as mechanical control (trap), which is cost-effective and nature-friendly. Therefore, this study aims to determine the potential of trap with different heights and various amounts of pineapple to control horned beetles in palm oil plant. The study procedures were carried out using a factorial random group design and a factorial scheme with 2 treatment factors and 3 repetitions. The first factor was the height of trap mounted with 3 treatments, namely P1 = 100 cm, P2 = 200 cm, and P3 = 250 cm. Meanwhile, the second factor was N1 = 50 grams per trap, N2 = 100 grams per trap, and N3 = 150 grams per trap. Data obtained were then analyzed using Analysis of Variance. When the results differed, analysis was continued with Duncan's Multiple Range Test at the 5% level. The parameters observed were the number of horn beetles trapped, sex ratio, and the species of horn beetles. The results showed that in height treatment, trap had a significant influence on the number of horn beetles over 3 and 9 days. Meanwhile, in pineapple treatment, weight had no significant effect on the number of horn beetles trapped and sex ratio. The results also showed that the interaction between both treatments had no significant impact.

##plugins.themes.academic_pro.article.details##

Author Biographies

Lita Nasution, Universitas Muhammadiyah Sumatera Utara

Department of Agrotechnology, Agriculture Faculty

Rahmad Syukur Siregar, Universitas Muhammadiyah Sumatera Utara

Department of Agribusiness, Agriculture Faculty

Makhrani Sari Ginting, Institut Teknologi Sawit Indonesia

Department of Plant Protection, Faculty of Science and Technology

How to Cite
1.
Nasution L, Siregar RS, Ginting MS. Controlling Horn Beetles Using Pineapple Fruits Trap in Palm Oil Plant. J. appl. agricultural sci. technol. [Internet]. 2024Nov.24 [cited 2024Dec.8];8(4):502-1. Available from: https://jaast.org/index.php/jaast/article/view/258

References

  1. Marshall SDG, Moore A, Vaqalo M, Noble A, Jackson TA. A new haplotype of the coconut rhinoceros beetles, Oryctes rhinoceros, has escaped biological control by Oryctes rhinoceros nudivirus and is invading Pacific Islands. J Invertebr Pathol 2017;149:127–34. https://doi.org/10.1016/j.jip.2017.07.006.
  2. Nasution L, Corah R, Nuraida N, Siregar AZ. Effectiveness Trichoderma and Beauveria bassiana on Larvae of Oryctes rhinoceros On Palm Oil Plant (Elaeis Guineensis Jacq.) In Vitro. International Journal of Environment, Agriculture and Biotechnology 2018;3:158–69. https://doi.org/10.22161/ijeab/3.1.20.
  3. Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS. Insect pathogens as biological control agents: Back to the future. J Invertebr Pathol 2015;132:1–41. https://doi.org/10.1016/j.jip.2015.07.009.
  4. Jackson TA. Dr. Alois Huger – Laying the foundations for an integrated insect pathology. J Invertebr Pathol 2017;143:83–9. https://doi.org/10.1016/j.jip.2016.11.010.
  5. Costa CA, Guiné RPF, Costa DVTA, Correia HE, Nave A. Pest Control in Organic Farming. Organic Farming, Elsevier; 2019, p. 41–90. https://doi.org/10.1016/B978-0-12-813272-2.00003-3.
  6. Skovmand O. Microbial control in Southeast Asia. J Invertebr Pathol 2007;95:168–74. https://doi.org/10.1016/j.jip.2007.03.006.
  7. Fauzana H, Sutikno A, Salbiah D. Population Fluctuations Oryctes rhinoceros L. Beetles in Plant Oil Palm (Elaeis guineensis Jacq.) Given Mulching Oil Palm Empty Bunch. CROPSAVER - Journal of Plant Protection 2019;1:42. https://doi.org/10.24198/cropsaver.v1i1.16998.
  8. Ghini R, Bettiol W, Hamada E. Diseases in tropical and plantation crops as affected by climate changes: current knowledge and perspectives. Plant Pathol 2011;60:122–32. https://doi.org/10.1111/j.1365-3059.2010.02403.x.
  9. Wang J-H, Che S-C, Qiu L-F, Li G, Shao J-L, Zhong L, et al. Efficacy of Emamectin Benzoate Trunk Injection Against the Asian Long-Horned Beetles [Anoplophora glabripennis (Coleoptera: Cerambycidae)]. J Econ Entomol 2020;113:340–7. https://doi.org/10.1093/jee/toz299.
  10. Singh SP, Rethinam P. Coconut hispine beetles Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae). CORD 2004;20:34. https://doi.org/10.37833/cord.v20i01.376.
  11. Indriyanti DR, Rahmawati R, Priyono B, Slamet M, Huyop FZ. Ecological studies of Oryctes rhinoceros larvae controlled by Metarhizium anisopliae and Enthomopatogenic Nematodes. Jurnal Pendidikan IPA Indonesia 2018;7:286–92. https://doi.org/10.15294/jpii.v7i3.14239.
  12. Maysaroh U, Martono E, Harjaka T. The Potency of Metarhizium anisopliae in Disturbing Oryctes rhinoceros (Coleoptera: Scarabaeidae) Growth and Development. Jurnal Perlindungan Tanaman Indonesia 2022;26:51. https://doi.org/10.22146/jpti.71755.
  13. Khan AU, Khan AU, Khanal S, Gyawali S. Insect pests and diseases of cinnamon (Cinnamomum verum Presi.) and their management in agroforestry system: A review. Acta Entomology and Zoology 2020;1:51–9. https://doi.org/10.33545/27080013.2020.v1.i2a.19.
  14. Emaiya R, Sumathi E, Mathirajan VG, Krishnamoorthy S V, Sathiah N, Venkatesan K. Development of IPM module for rhinoceros beetles (Oryctes rhinoceros L.) in juvenile coconut garden. Ecology, Environment and Conservation 2022;28:2116–8. https://doi.org/10.53550/EEC.2022.v28i04.071.
  15. Anggini PS, Wahyudi L, Mantiri FR. Efektivitas Feromon terhadap Interest Kumbang Tanduk (Oryctes rhinoceros) pada Tanaman Kelapa (Cocos nucifera L.). J Bios Logos 2022;12:71. https://doi.org/10.35799/jbl.v12i1.40116.
  16. Pujiastuti Y, Hendrawansyah, Hendarjanti H. Propagation Of Entomopathogenic Bacteria Bacillus Thuringiensis In Various Agricultural Waste and Its Effectivity Against Oryctes Rinoceros (Coleoptera:Scarabaeidae). IOP Conf Ser Earth Environ Sci 2022;995:012054. https://doi.org/10.1088/1755-1315/995/1/012054.
  17. Egonyu JP, Baguma J, Martínez LC, Priwiratama H, Subramanian S, Tanga CM, et al. Global Advances on Insect Pest Management Research in Oil Palm. Sustainability 2022;14:16288. https://doi.org/10.3390/su142316288.
  18. Sayono, Permatasari A, Sumanto D. The Effectiveness of Derris elliptica (Wall.) Benth Root Extract Against Temephos-resistant Aedes aegypti Larvae. IOP Conf Ser Earth Environ Sci 2019;292:012052. https://doi.org/10.1088/1755-1315/292/1/012052.
  19. Arvind K, Rajesh MK, Josephrajkumar A, Grace T. Dataset of de novo assembly and functional annotation of the transcriptome of certain developmental stages of coconut rhinoceros beetles, Oryctes rhinoceros L. Data Brief 2020;28:105036. https://doi.org/10.1016/j.dib.2019.105036.
  20. Tsykun T, Javal M, Hölling D, Roux G, Prospero S. Fine-scale invasion genetics of the quarantine pests, Anoplophora glabripennis, reconstructed in single outbreaks. Sci Rep 2019;9:19436. https://doi.org/10.1038/s41598-019-55698-3.
  21. Martina M, Oewen RR, Riyanti E, Syawqie A, Supriatno S. The effects of ethyl acetate fraction of Ananas Comosus (L.) Merr. of tongue cancer cell growth inhibition Supri’s Clone-1, invitro. Padjadjaran Journal of Dentistry 2011;23. https://doi.org/10.24198/pjd.vol23no2.14017.
  22. Indriyanti DR, Lutfiana JE, Widiyaningrum P, Susilowati E, Slamet M. Aggregation pheromones for monitoring the coconut rhinoceros beetles ( Oryctes rhinoceros ) in Jerukwangi Village, Jepara, Indonesia. J Phys Conf Ser 2018;983:012177. https://doi.org/10.1088/1742-6596/983/1/012177.
  23. Rizvi SAH, George J, Reddy GVP, Zeng X, Guerrero A. Latest Developments in Insect Sex Pheromone Research and Its Application in Agricultural Pest Management. Insects 2021;12:484. https://doi.org/10.3390/insects12060484.
  24. Diatta P, Rey J-Y, Vayssieres J-F, Diarra K, Coly EV, Lechaudel M, et al. Fruits phenology of citruses, mangoes and papayas influences egg-laying preferences of Bactrocera invadens (Diptera: Tephritidae). Fruits 2013;68:507–16. https://doi.org/10.1051/fruits/2013093.
  25. Abaza AM, Ahmed YM, Abbas MG, Soliman HA, Ashour HK. Chemical Constituents of Colocasia Esculenta Leaves Extract in Relation to Its Self Defense against the Cotton Leafworm, Spodoptera Littoralis (Boisd.). Catrina 2015;13:1–7. https://cat.journals.ekb.eg/article_18373.html
  26. Prior C, Arura M. The infectivity of Metarhizium anisopliae to two insect pests of coconuts. J Invertebr Pathol 1985;45:187–94. https://doi.org/10.1016/0022-2011(85)90008-4.
  27. Santi IS, Manto A. Implementation of integrated pests control to reduce rhino beetles (Oryctes rhinoceros) attacks in oil palm plantations. Tropical Plantation Journal 2022;1:layouting. https://doi.org/10.56125/tpj.v1i2.10.
  28. Witzgall P, Kirsch P, Cork A. Sex Pheromones and Their Impact on Pest Management. J Chem Ecol 2010;36:80–100. https://doi.org/10.1007/s10886-009-9737-y.
  29. Ginting MS, Febrianto EB, Pratama GA. Effect of Fruits-Trap Height on Pest Control of the Rhinoceros Beetles (Oryctes rhinoceros) on Immature Plant of Oil Palm (Elaeis guineensis Jacq.). AGRILAND Jurnal Ilmu Pertanian 2022;10:64–7. https://jurnal.uisu.ac.id/index.php/agriland/article/view/5550
  30. Bookeri MAM, Masaruddin M fitri, Shah NAA, Noh AM, Samsuri N syakira, Bakar B hisham A, et al. Evaluation of Light Trap System in Monitoring of Rice Pests, Brown Planthopper (Nilaparvata lugens). Advances in Agricultural and Food Research Journal 2021;3. https://doi.org/10.36877/aafrj.a0000187.
  31. Oehlschlager AC, Chinchilla C, Castillo G, Gonzalez L. Control of Red Ring Disease by Mass Trapping of Rhynchophorus Palmarum (Coleoptera: Curculionidae). Florida Entomologist 2022;85:507–13. https://doi.org/10.1653/0015-4040(2002)085[0507:corrdb]2.0.co;2.
  32. Pradana MG, Siallagan IA, Guntoro G, Susanto A. Evaluation of packaging design for pheromone product to control Oryctes rhinoceros in oil palm plantation. IOP Conf Ser Earth Environ Sci 2023;1133:012043. https://doi.org/10.1088/1755-1315/1133/1/012043.
  33. Kudom AA, Kwapong PK. Floral Visitors of Ananas Comosus in Ghana: A Preliminary Assessment. J Pollinat Ecol 2010;2:27–32. http://www.pollinationecology.org/paper_abstract_view.php?p_id=24
  34. Sweeney JD, Silk P, Grebennikov V, Mandelshtam M. Efficacy of semiochemical-baited trap for detection of Scolytinae species (Coleoptera: Curculionidae) in the Russian Far East. Eur J Entomol 2016;113:84–97. https://doi.org/10.14411/eje.2016.010.
  35. Young EC. The epizootiology of two pathogens of the coconut palm rhinoceros beetles. J Invertebr Pathol 1974;24:82–92. https://doi.org/10.1016/0022-2011(74)90167-0.
  36. McCauley VJE, Zacharuk RY, Tinline RD. Histopathology of green muscardine in larvae of four species of elateridae (Coleoptera). J Invertebr Pathol 1968;12:444–59. https://doi.org/10.1016/0022-2011(68)90352-2.