Phytochemical, Antioxidant, and Antibacterial Activity of Essential Oil Hyptis capitata Using Solvent-Free Microwave Extraction

##plugins.themes.academic_pro.article.main##

Yuni Susanti
Ayu Qurota A’yun

Abstract

Knobweed (Hyptis capitata) is a member of the genus Hyptis and the medicinal properties remain underexplored in scientific research. In this context, the use of Hyptis capitata essential oil as a medicinal plant depends on phytochemical content. Hyptis capitata is easily found in rice fields or agricultural areas such as Banyuwangi. Therefore, this research aimed to describe phytochemical compounds, antioxidants, and antibacterial activity of essential oil Hyptis capitata in Banyuwangi using Solvent-Free Microwave Extraction (SFME) method. Essential oil from leaves and inflorescence of the species was obtained with a yield of 0.273% and 0.282%, respectively. The results of Gas Chromatography-Mass Spectrometry (GC-MS) analysis showed that inflorescence and leaves of Hyptis capitata consisted of diterpenes, triterpenes, sesquiterpenes, esters, alcohols, ketones, and other groups of compounds. SFME method for the extraction affected both essential oil yield and phytochemical composition. Meanwhile, there were variations in phytochemical compounds of the plant parts used and from several previous research. The optimum % DPPH inhibition value of leaves extract and inflorescence were 19.187±0,06% and 18.784±0,06%, respectively. Antibacterial activity against Staphylococcus aureus and Eschericia coli reported no inhibition of plant extract. Phytochemical analysis showed several compounds with antibacterial potential, suggesting the need for further research of antibacterial activity against other pathogenic bacteria and exploration of additional biological activities.

##plugins.themes.academic_pro.article.details##

Author Biographies

Yuni Susanti, Institut Teknologi dan Bisnis Muhammadiyah Banyuwangi

Departement of Chemical Engineering

Ayu Qurota A’yun, Institut Teknologi dan Bisnis Muhammadiyah Banyuwangi

Departement of Chemical Engineering

How to Cite
1.
Susanti Y, A’yun AQ. Phytochemical, Antioxidant, and Antibacterial Activity of Essential Oil Hyptis capitata Using Solvent-Free Microwave Extraction. J. appl. agricultural sci. technol. [Internet]. 2024Nov.24 [cited 2024Dec.8];8(4):450-6. Available from: https://jaast.org/index.php/jaast/article/view/275

References

  1. Sá S de, Fiuza TS, Borges LL, Ferreira HD, Tresvenzol LMF, Ferri PH, et al. Chemical composition and seasonal variability of the essential oils of leaves and morphological analysis of Hyptis carpinifolia. Revista Brasileira de Farmacognosia 2016;26:688–93. https://doi.org/10.1016/j.bjp.2016.05.011.
  2. McNeil M, Facey P, Porter R. Essential Oils from the Hyptis genus- A Review (1909-2009). Nat Prod Commun 2011;6:1934578X1100601. https://doi.org/10.1177/1934578X1100601149.
  3. Sedano-Partida MD, dos Santos KP, Sala-Carvalho WR, Silva-Luz CL, Furlan CM. A review of the phytochemical profiling and biological activities of Hyptis Jacq.: a Brazilian native genus of Lamiaceae. Brazilian Journal of Botany 2020;43:213–28. https://doi.org/10.1007/s40415-020-00582-y.
  4. Kashiwada Y, Wang H-K, Nagao T, Kitanaka S, Yasuda I, Fujioka T, et al. Anti-AIDS Agents. 30. Anti-HIV Activity of Oleanolic Acid, Pomolic Acid, and Structurally Related Triterpenoids. J Nat Prod 1998;61:1090–5. https://doi.org/10.1021/np9800710.
  5. John R, Sabu KR, Manilal A. Chemical Composition, Antioxidant, and Mosquito Larvicidal Activity of Essential Oils from Hyptis capitata Jacq. J Exp Pharmacol 2022;Volume 14:195–204. https://doi.org/10.2147/JEP.S355280.
  6. Sumitha V, Mini I. Pharmacognostical standardization of Hyptis capitata Jacq . Lamiaceae. J Pharmacogn Phytochem 2019;8:2791–6. https://www.phytojournal.com/archives/2019.v8.i3.8433/pharmacognostical-standardization-of-ltemgthyptis-capitataltemgt-jacq-lamiaceae
  7. Radosevich SR, Stubbs MM, Ghersa CM, Radosevich SR, Ghersa CM. Plant invasions — process and patterns. Weed Sci 2003;51:254–9. https://www.jstor.org/stable/4046728
  8. To’bungan N, Widyarini S, Nugroho LH, Pratiwi R. Ethnopharmacolgy of Hyptis capitata. Plant Science Today 2022. https://doi.org/10.14719/pst.1602.
  9. To’bungan N. Pemanfaatan dan Skrining Fitokimia Infusa Daun Rumput Knop (Hyptis capitata Jacq.). Biota : Jurnal Ilmiah Ilmu-Ilmu Hayati 2021:149–54. https://doi.org/10.24002/biota.v5i3.3520.
  10. Zuliani NE, Erwin, Kusuma IW. Uji Aktivitas Antioksidan (Metode DPPH) Ekstrak Metanol dan Fraksi - Fraksinya dari Daun Rumput Knop (Hyptis capitata Jacq.). Jurnal Atomik 2019;4:36–40. http://jurnal.kimia.fmipa.unmul.ac.id/index.php/JA/article/view/724/537
  11. Sampaio BL, Edrada-Ebel R, Da Costa FB. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants. Sci Rep 2016;6:29265. https://doi.org/10.1038/srep29265.
  12. Yang L, Zheng Z-S, Cheng F, Ruan X, Jiang D-A, Pan C-D, et al. Seasonal Dynamics of Metabolites in Needles of Taxus wallichiana var. mairei. Molecules 2016;21:1403. https://doi.org/10.3390/molecules21101403.
  13. Azevedo NR, Campos IFP, Ferreira HD, Portes TA, Santos SC, Seraphin JC, et al. Chemical variability in the essential oil of Hyptis suaveolens. Phytochemistry 2001;57:733–6. https://doi.org/10.1016/S0031-9422(01)00128-5.
  14. Rupa D, Sulistyaningsih YC, Dorly D, Ratnadewi D. IDENTIFICATION OF SECRETORY STRUCTURE, HISTOCHEMISTRY AND PHYTOCHEMICAL COMPOUNDS OF MEDICINAL PLANT Hyptis capitata Jacq. Biotropia (Bogor) 2017;24:94–103. https://doi.org/10.11598/btb.2017.24.2.499.
  15. Kusuma IW, Murdiyanto, Arung ET, Syafrizal, Kim Y. Antimicrobial and antioxidant properties of medicinal plants used by the Bentian tribe from Indonesia. Food Science and Human Wellness 2014;3:191–6. https://doi.org/10.1016/j.fshw.2014.12.004.
  16. Xu D-H, Huang Y-S, Jiang D-Q, Yuan K. The essential oils chemical compositions and antimicrobial, antioxidant activities and toxicity of three Hyptis species. Pharm Biol 2013;51:1125–30. https://doi.org/10.3109/13880209.2013.781195.
  17. Haryanti S, Widiyastuti Y. Aktivitas Sitotoksik pada Sel MCF-7 dari Tumbuhan Indonesia untuk Pengobatan Tradisional Kanker Payudara. Media Penelitian Dan Pengembangan Kesehatan 2017;27. https://doi.org/10.22435/mpk.v27i4.5010.247-254.
  18. Ayu S, Harso W, Jannah M. Profil Toksikologis Ekstrak Daun Tumbuhan Baka-Baka (Hyptis capitata Jacq.) Pada Hati Tikus Putih (Rattus norvegicus). Biocelebes 2020;14:10–21. https://doi.org/10.22487/bioceb.v14i1.15082.
  19. Sumitha V, Mini S V, Nair LS. Larvicidal efficacy of Hyptis capitata Jacq. Against Culex quinquefasciatus mosquito (Culicidae). Int J Mosq Res 2021;8:42–6. https://www.dipterajournal.com/pdf/2021/vol8issue4/PartA/8-4-10-166.pdf
  20. Golmakani M, Moayyedi M. Comparison of heat and mass transfer of different microwave‐assisted extraction methods of essential oil from Citrus limon (Lisbon variety) peel. Food Sci Nutr 2015;3:506–18. https://doi.org/10.1002/fsn3.240.
  21. Variyana Y, Susanti Y. Optimasi Ekstraksi dari capsicum frutescens L dengan Microwave-Assisted Soxhlet Extraction (MASE) Menggunakan Response Surface Methodology (RSM). JRST (Jurnal Riset Sains Dan Teknologi) 2022;5:131. https://doi.org/10.30595/jrst.v5i2.10677.
  22. Kusuma HS, Mahfud M. The extraction of essential oils from patchouli leaves ( Pogostemon cablin Benth) using a microwave air-hydrodistillation method as a new green technique. RSC Adv 2017;7:1336–47. https://doi.org/10.1039/C6RA25894H.
  23. Marxen K, Vanselow KH, Lippemeier S, Hintze R, Ruser A, Hansen U-P. Determination of DPPH Radical Oxidation Caused by Linear Regression Analysis of Spectrophotometric Measurements. Sensors 2007;7:2080–95. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864510/pdf/sensors-07-02080.pdf
  24. Hossain ML, Lim LY, Hammer K, Hettiarachchi D, Locher C. A Review of Commonly Used Methodologies for Assessing the Antibacterial Activity of Honey and Honey Products. Antibiotics 2022;11:975. https://doi.org/10.3390/antibiotics11070975.
  25. Li R, Tang G, Liu X, Li J, Wang D, Ji S. An ethnopharmacological review of Hyptis suaveolens (L.) Poit. Tropical Journal of Pharmaceutical Research 2020;19:1541–50. https://doi.org/10.4314/tjpr.v19i7.29.
  26. Fan G-J, Ndolo VU, Katundu M, Kerr RB, Arntfield S, Beta T. Comparison of Phytochemicals and Antioxidant Capacity in Three Bean Varieties Grown in Central Malawi. Plant Foods for Human Nutrition 2016;71:204–10. https://doi.org/10.1007/s11130-016-0548-3.
  27. Mohammadhosseini M. Chemical Composition of the Essential Oils and Volatile Fractions from Flowers, Stems and Roots of Salvia multicaulis Vahl. by Using MAHD, SFME and HS-SPME Methods. Journal of Essential Oil Bearing Plants 2015;18:1360–71. https://doi.org/10.1080/0972060X.2015.1024447.
  28. Mohammadhosseini M, Nekoei M. Chemical Compositions of the Essential Oils and Volatile Compounds from the Aerial Parts of Ferula ovina Using Hydrodistillation, MAHD, SFME and HS-SPME Methods. Journal of Essential Oil Bearing Plants 2014;17:747–57. https://doi.org/10.1080/0972060X.2014.884951.
  29. Mohanty S, Ray A, Naik PK, Sahoo A, Jena S, Das PK, et al. Variation in Yield, Chemical Composition and Biological Activities of Essential Oil of Three Curcuma Species: A Comparative Evaluation of Hydrodistillation and Solvent-Free Microwave Extraction Methods. Molecules 2023;28:4434. https://doi.org/10.3390/molecules28114434.
  30. Noge K, Becerra JX. Germacrene D, A Common Sesquiterpene in the Genus Bursera (Burseraceae). Molecules 2009;14:5289–97. https://doi.org/10.3390/molecules14125289.
  31. Babarinde SA, Olaniran OA, Ottun AT, Oderinde AE, Adeleye AD, Ajiboye O, et al. Chemical composition and repellent potentials of two essential oils against larger grain borer, Prostephanus truncatus (Horn.) (Coleoptera: Bostrichidae). Biocatal Agric Biotechnol 2021;32:101937. https://doi.org/10.1016/j.bcab.2021.101937.
  32. Pratama OA, TUNJUNG WAS, SUTIKNO S, DARYONO BS. Bioactive compound profile of melon leaf extract (Cucumis melo L. ‘Hikapel’) infected by downy mildew. Biodiversitas 2019;20. https://doi.org/10.13057/biodiv/d201143.
  33. Ibrahim N ‘Izzah, Naina Mohamed I. Interdependence of Anti-Inflammatory and Antioxidant Properties of Squalene–Implication for Cardiovascular Health. Life 2021;11:103. https://doi.org/10.3390/life11020103.
  34. Islam MT, Ali ES, Uddin SJ, Shaw S, Islam MA, Ahmed MI, et al. Phytol: A review of biomedical activities. Food and Chemical Toxicology 2018;121:82–94. https://doi.org/10.1016/j.fct.2018.08.032.
  35. Luhata LP, Hirao M, Mori N, Usuki T. Chemical composition and antioxidant activity of the hexane fraction from leaf extracts of Odontonema strictum. American Journal of Essential Oils and Natural Products 2023;11:12–6. https://www.essencejournal.com/pdf/2023/vol11issue1/PartA/7-2-5-261.pdf.
  36. Agarwal K, Varma R. Antioxidant activity and Phytochemical analysis of Hyptis suaveolens (L.) Poit. Journal of Advanced Pharmacy Education & Research 2013;3:541–9. https://japer.in/article/antioxidant-activity-and-phytochemical-analysis-of-hyptis-suaveolens-l-poit.
  37. Kusuma IW, Rahmini, Arung ET, Pramono AY, Erwin, Supomo. Biological activities and phytochemicals of Hyptis capitata grown in East Kalimantan, Indonesia. J Appl Biol Biotechnol 2020;8:58–64. https://doi.org/10.7324/JABB.2020.80210.
  38. Boudjedjou L, Ramdani M, Zeraib A, Benmeddour T, Fercha A. Chemical composition and biological activities of Algerian Santolina africana essential oil. Sci Afr 2019;4:e00090. https://doi.org/10.1016/j.sciaf.2019.e00090.