Experimental Study on Soaked Corn Cobs as Feedstock for Biomass Gasification in an Open Downdraft Gasifier
##plugins.themes.academic_pro.article.main##
Abstract
Fossil fuels, which account for 83% of Indonesia's total energy supply, are depleting and environmentally unsustainable. Corn cob biomass, with an annual yield of 4.34 million metric tons, presents a viable alternative. Through gasification at temperatures of 700–1200°C, corn cobs can be converted into combustible gas or syngas. To enhance syngas yield, the corn cob gasification process can be optimized by increasing moisture content through soaking. However, experiments with soaked corn cobs have shown a significant decline in temperature and gasification zone performance. The gasification temperature decreased from 1024°C to 614°C, falling below the 700°C threshold. Additionally, the gasification zone shifted significantly downward in the reactor. This reduction is attributed to the high moisture content of the corn cobs, which exceeded 30%, reaching 56.78%, allowing the gasification process to last for 48 minutes. Before the gasifier ceased operation, syngas production achieved a promising average thermal power of 1.76 kW with an efficiency of 7.14%. These findings indicate that soaked corn cobs can serve as biomass gasification feedstock, provided the moisture content does not exceed 30%.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Kementrian ESDM, Wahyu Kencono A, Dwinugroho M, Satra Baruna E, Ajiwihanto N. Handbook Of Energy & Economic Statistics Of Indonesia 2023. Ministry of Energy and Mineral Resources Republic of Indonesia; 2023. https://www.esdm.go.id/assets/media/content/content-handbook-of-energy-and-economic-statistics-of-indonesia-2023.pdf
- IESR. Indonesia Energy Transition Outlook 2024 IESR Institute for Essential Services Reform. Indonesia Energy Transition Outlook 2024, vol. 4:2024, 2023, p. 26–26. www.iesr.or.id
- Gioietta Kuo. When Fossil Fuels Run Out, What Then? Millennium Alliance for Humanity and the Biosphere (MAHB) 2019. https://mahb.stanford.edu/library-item/fossil-fuels-run/ (accessed September 29, 2021).
- Speight JG. Handbook of Gasification Technology. 2020. https://doi.org/10.1002/9781118773970.
- Cheng JJ. Biomass to Renewable Energy Processes. Second. CRC Press; 2017. https://books.google.co.id/books?hl=id&lr=&id=impQDwAAQBAJ&oi=fnd&pg=PP1&dq=Biomass+to+Renewable+Energy+Processes&ots=1DXtEV64u_&sig=kziD1avw0pSBD4RB0uNIHUi0Isw&redir_esc=y#v=onepage&q=Biomass to Renewable Energy Processes&f=false
- Kuang C. Analysis of Green House Gases and Positive Impact of Replacing Traditional Energy with Clean Energy. 2020 8th International Conference on Environment Pollution and Prevention (ICEPP 2020), E3S Web of Conferences 241, 02005 (2021); 2021, p. 5. https://doi.org/10.1051/e3sconf/202124102005.
- Soeder DJ, Borglum SJ. The Fossil Fuel Revolution: Shale Gas and Tight Oil. Cambrige, United State: Elsevier; 2019.
- Yang Z, Wei J, Ge Q. Friction or cooperation? Boosting the global economy and fighting climate change in the post-pandemic era. Humanities and Social Sciences Communications 2023;10:1–11. https://doi.org/10.1057/s41599-023-02307-4.
- Larch M, Wanner J. The consequences of non-participation in the Paris Agreement. European Economic Review 2024;163:104699. https://doi.org/10.1016/j.euroecorev.2024.104699.
- Tran HM, Tsai FJ, Lee YL, Chang JH, Chang L Te, Chang TY, et al. The impact of air pollution on respiratory diseases in an era of climate change: A review of the current evidence. Science of the Total Environment 2023;898:166340. https://doi.org/10.1016/j.scitotenv.2023.166340.
- Chishti MZ, Xia X, Dogan E. Understanding the effects of artificial intelligence on energy transition: The moderating role of Paris Agreement. Energy Economics 2024;131:107388. https://doi.org/10.1016/j.eneco.2024.107388.
- Sinsel SR, Riemke RL, Hoffmann VH. Challenges and solution technologies for the integration of variable renewable energy sources d a review. Renewable Energy 2020;145:2271–85. https://doi.org/10.1016/j.renene.2019.06.147.
- Eling J, Okot DK, Menya E, Atim MR. Densification of raw and torrefied biomass: A review. Biomass and Bioenergy 2024;184:107210. https://doi.org/10.1016/j.biombioe.2024.107210.
- Motta IL, Marchesan AN, Maciel Filho R, Wolf Maciel MR. Correlating biomass properties, gasification performance, and syngas applications of Brazilian feedstocks via simulation and multivariate analysis. Industrial Crops and Products 2022;181:114808. https://doi.org/10.1016/j.indcrop.2022.114808.
- Makul N, Fediuk R, Amran M, Al-Akwaa MS, Pralat K, Nemova D, et al. Utilization of biomass to ash: An overview of the potential resources for alternative energy. Materials 2021;14:1–20. https://doi.org/10.3390/ma14216482.
- Tri Setioputro N, Kosim M, Kasda, Sukwadi R, Basuki WW, Saputra DI. Investigation of reactor temperature and performance of syngas cooling system for vacuum gasification of soaked biomass. Case Studies in Thermal Engineering 2023;50. https://doi.org/10.1016/j.csite.2023.103430.
- Ahmad W, Nisar J, Anwar F, Muhammad F. Bioresource Technology Reports Future prospects of biomass waste as renewable source of energy in Pakistan : A mini review. Bioresource Technology Reports 2023;24:101658. https://doi.org/10.1016/j.biteb.2023.101658.
- Primadita DS, Kumara .N.S., Ariastina WG. A Riview on Biomass For Electricity Generation In Indonesia. Journal of Electrical, Electronics and Informatics, 2020;4:1–9. https://www.researchgate.net/profile/I-Nyoman-Satya-Kumara-2/publication/342739788_A_Review_on_Biomass_For_Electricity_Generation_In_Indonesia/links/5f0467ff92851c52d61de45f/A-Review-on-Biomass-For-Electricity-Generation-In-Indonesia.pdf
- Purohit P, Tripathi AK, Kandpal TC. Energetics of coal substitution by briquettes of agricultural residues. Energy 2006;31:1321–31. https://doi.org/10.1016/j.energy.2005.06.004.
- Badan Pusat Statistik. Luas Panen dan Produksi Jagung di Indonesia 2023. BPS - Statistics Indonesia 2023. https://www.bps.go.id/id/pressrelease/2023/10/16/2049/luas-panen-dan-produksi-jagung-di-indonesia-2023--angka-sementara-.html.
- Nadaleti WC, Przybyla G. SI engine assessment using biogas, natural gas and syngas with different content of hydrogen for application in Brazilian rice industries: Efficiency and pollutant emissions. Int J Hydrogen Energy 2018;43:10141–54. https://doi.org/10.1016/j.ijhydene.2018.04.073.
- Song G, Zhao S, Wang X, Cui X, Wang H, Xiao J. An efficient biomass and renewable power-to-gas process integrating electrical heating gasification. Case Studies in Thermal Engineering 2022;30:101735. https://doi.org/10.1016/j.csite.2021.101735.
- Widiasri NLP, Husni A, Sutrisna R, Liman L. Pengaruh Dosis Ragi Tempe Pada Pembuatan Tempe Tongkol Jagung Terhadap Kandungan Nutrisi Untuk Pakan Ternak. Jurnal Riset Dan Inovasi Peternakan (Journal of Research and Innovation of Animals) 2024;8:100–6. https://doi.org/10.23960/jrip.2024.8.1.100-106.
- Usman U, Beni S, Atlantika YN, Hapsari VR, Vuspitasari BK. PEMANFAATAN LIMBAH TONGKOL JAGUNG MENJADI BRIKET BAHAN BAKAR YANG RAMAH LINGKUNGAN DAN BERNILAI JUAL. SELAPARANG: Jurnal Pengabdian Masyarakat Berkemajuan 2023;7:2808–14. https://doi.org/doi.org/10.31764/jpmb.v7i4.19777.
- Carmona OM, Vederza A, Morales R AD, Lenis YA. Steady and transient state behavior of a gasification process under fixed-bed downdraft configuration. Heliyon 2024;10. https://doi.org/10.1016/j.heliyon.2024.e34781.
- Molino A, Chianese S, Musmarra D. Biomass Gasification Technology: The State Of The Art Overview. Journal of Energy Chemistry 2016;25:10–25. https://doi.org/10.1016/j.jechem.2015.11.005
- Motta IL, Miranda NT, Maciel Filho R, Wolf Maciel MR. Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects. Renewable and Sustainable Energy Reviews 2018;94:998–1023. https://doi.org/10.1016/j.rser.2018.06.042.
- Diyoke C, Gao N, Aneke M, Wang M, Wu C. Modelling of down-draft gasification of biomass – An integrated pyrolysis, combustion and reduction process. Applied Thermal Engineering 2018;142:444–56. https://doi.org/10.1016/j.applthermaleng.2018.06.079.
- Arjharn W, Hinsui T, Liplap P, Raghavan GS. Evaluation of electricity production from different biomass feedstocks using a pilot-scale downdraft gasifier. Journal of Biobased Materials and Bioenergy 2012;6:309–18. https://doi.org/https://doi.org/10.1166/jbmb.2012.1213.
- Cummer KR, Brown RC. Ancillary equipment for biomass gasification. Biomass and Bioenergy 2002;23:113–28. https://doi.org/doi.org/10.1016/S0961-9534(02)00038-7.
- Hughes WEM, Larson ED. Effect of fuel moisture content on biomass-IGCC performance 1998. https://doi.org/https://doi.org/10.1016/j.fuel.2006.05.025.
- Li Z, Li J, Yu T, Jia X, Zhao J, Yan B, et al. Chemical looping gasification of high-moisture content biomass: The interactions between H2O and oxygen carrier. Applied Energy 2024;368:123529. https://doi.org/10.1016/j.apenergy.2024.123529.
- E871-82 A. Standard Test Method for Moisture Analysis of Particulate Wood Fuels 1. Annual Book of ASTM Standards 2014;82:2. https://doi.org/10.1520/E0871-82R13.2.
- Martinez-Boggio SD, Merola SS, Teixeira Lacava P, Irimescu A, Curto-Risso PL. Effect of fuel and air dilution on syngas combustion in an optical SI engine. Energies 2019;12. https://doi.org/10.3390/en12081566.
- Prins MJ, Ptasinski KJ, Janssen FJJG. From coal to biomass gasification: Comparison of thermodynamic efficiency. Energy 2007;32:1248–59. https://doi.org/10.1016/j.energy.2006.07.017.
- Setioputro NT, Kosim M, Kosasih DP, Sukwadi R, Basuki WW, Saputra DI. Effectiveness Study on The Vacuum Biomass Gasification System Using Variation of Suction Pump Rotation Power and Biomass Wetness. WSEAS Transactions on Earth Sciences and Human Constructions 2022;2:72–80. https://doi.org/10.37394/232024.2022.2.11.