Performance of F2 Generation Lines of Soybean (Glycine max. L) as Backcross Results of GHJ-4 and GHJ-5 with Ryoko as A Donor Parent

##plugins.themes.academic_pro.article.main##

Nurul Sjamsijah
Sri Rahayu
Eva Rosdiana
Putri Santika
Sepdian Luri Asmono

Abstract

The breeding of new high-yielding varieties is one of the solutions to the low productivity of soybeans in Indonesia. Superior genotypes of ‘GHJ-4 (A)’ and ‘GHJ-5 ’ were obtained in the previous study with an average weight of 13 g/100 seeds and a potential yield of 3 tons/ha. The attempt to increase the weight and size of the seeds of ‘GHJ-4’ and ‘GHJ-5’ was continued using the backcrossing method with ‘Ryoko  (>35 g/100 seeds) as a parent donor. F1 plants were obtained with an average weight of 15 g/100 seeds. This study aimed to determine the performance of the F2 generation of backcross in terms of the number of filled pods, the weight of 100 seeds, yield per plant (g), yield per plot (kg), and potential yield per hectare (tons/ha), as well as the heritability value of the genotypes. In this particular study, the F2 seeds from F1 plants were then planted and observed. This study used a non-factorial randomized block design (RBD) with 11 soybean genotypes, each consisting of 3 replications. The results showed that the F2 generations (GHJ-4XRyoko, RyokoXGHJ -5, and GHJ-4XGHJ-5) are considered as prospective new high-yielding varieties with a potential yield of ≥ 3.5 tons/ha, which have successfully restored the trait of ‘Ryoko’ and surpassed the performance of ‘GHJ-4’ and ‘GHJ-5’ as their parents in all parameters. The heritability value of the genotypes tested belongs to the high category, on the parameters of the number of filled pods (96.937 %), yield per plant (98.102 %), the weight of 100 seeds (99.132%), yield per plot (92.605 %) and potential yield per hectare (92.257 %).  For the parameters observed, the back cross yields of harvest age were 72-74 HST, the weight of 100 grains was 17-18 grams and the yield per hectare was around 4 tons/ha. The heritability value shows that the observed traits are inherited from parents on average more than 90% and the selection that will be used is pedigree selection.

##plugins.themes.academic_pro.article.details##

Author Biographies

Nurul Sjamsijah, Politeknik Negeri Jember

Department of Agricultural Production

Sri Rahayu, Politeknik Negeri Jember

Department of Agricultural Production

Eva Rosdiana, Politeknik Negeri Jember

Department of Agricultural Production

Putri Santika, Politeknik Negeri Jember

Department of Agricultural Production

Sepdian Luri Asmono, Politeknik Negeri Jember

Department of Agricultural Production

How to Cite
Sjamsijah, N. ., Rahayu, S. ., Rosdiana, E., Santika, P. ., & Asmono, S. L. . (2023). Performance of F2 Generation Lines of Soybean (Glycine max. L) as Backcross Results of GHJ-4 and GHJ-5 with Ryoko as A Donor Parent. Journal of Applied Agricultural Science and Technology, 7(4), 445-454. https://doi.org/10.55043/jaast.v7i4.97

References

  1. Ali, W., Ahmad, M. M., Iftikhar, F., Qureshi, M., & Ceyhan, A. (2020). Nutritive potentials of Soybean and its significance for humans health and animal production: A Review. Eurasian Journal of Food Science and Technology, 4(1), 41–53. https://dergipark.org.tr/en/download/article-file/1273470
  2. Anggraeni, B. W., Sopandie, D., Khumaida, N. (2010). Studi morfo-anatomi dan pertumbuhan kedelai (Glycine max (L.) Merr.) pada kondisi cekaman intensitas cahaya rendah [Institut Pertanian Bogor]. http://repository.ipb.ac.id/handle/123456789/35465
  3. Arsyad, D. M., & Asadi. (2011). Selection of F4, F5 and F6 Soybean Breeding Lines for High Yield and Large Seed Size. Proceeding of The 7th ACSA Conference 2011, 209–214. https://repository.ipb.ac.id/jspui/bitstream/123456789/62367/1/_ACSAC-ISBN-44.pdf
  4. Badan Pusat Statistik Indonesia. (2021). Analisis Produktivitas Jagung dan Kedelai di Indonesia 2020(Hasil Survey Ubinan). BPS-RI. https://www.bps.go.id/publication/2021/07/27/16e8f4b2ad77dd7de2e53ef2/analisis-produktivitas-jagung-dan-kedelai-di-indonesia-2020-hasil-survei-ubinan-.html
  5. Badiaraja, P. H., Zubaidah, S., & Kuswantoro, H. (2021). Maternal effect of agronomic and morphological characters on cluster structure of F3 soybean lines. Biodiversitas Journal of Biological Diversity, 22(2), 969–982. https://doi.org/10.13057/biodiv/d220253
  6. Barmawi, M., Yushardi, A., & Sa’diyah, N. (2013). Daya waris dan harapan kemajuan seleksi karakter agronomi kedelai Generasi F2 hasil persilangan antara Yellow bean dan Taichung. Jurnal Agrotek Tropika., 1(1), 20–24. https://jurnal.fp.unila.ac.id/index.php/JA/article/view/1882/1643
  7. De Souza, A. P., Burgess, S. J., Doran, L., Manukyan, L., Hansen, J., Maryn, N., Leonelli, L., Niyogi, K. K., Long, S. P. & Gotarkar, D. (2023). Response to Comments on “Soybean photosynthesis and crop yield is improved by accelerating recovery from photoprotection.” Science, 379(6634), 851–854. https://doi.org/10.1126/science.adf2189
  8. Desmawati, D., Fasrini, U. U., Lestari, Y., Afriwardi, A., & Sulastri, D. (2021). Tofu and Tempeh, the Mostly Sources of Phytoestrogens in Minangkabau Premenopausal Women Ethnicity. IOP Conference Series: Earth and Environmental Science, 741(1), 012015. https://doi.org/10.1088/1755-1315/741/1/012015
  9. Donkor, E. F., Adjei, R. R., Amadu, B., & Boateng, A. S. (2022). Genetic variability, heritability and association among yield components and proximate composition of neglected and underutilized Bambara groundnut [Vigna subterranea (L) Verdc] accessions for varietal development in Ghana. Heliyon, 8(6), e09691. https://doi.org/10.1016/j.heliyon.2022.e09691
  10. Gao, H., Sun, R., Yang, M., Yan, L., Hu, X., Fu, G., Hong, H., Guo, B., Zhang, X., Liu, L., Zhang, S., & Qiu, L. (2022). Characterization of the petiole length in soybean compact architecture mutant M657 and the breeding of new lines. Journal of Integrative Agriculture, 21(9), 2508–2520. https://doi.org/10.1016/j.jia.2022.07.004
  11. Ibrahim, A. K., Dawaki, K. D., & Hassan, S. M. (2019). Genetic variability, heritability and correlation among soybean [Glycine max. (L.) Merrill] varieties. Bayero Journal of Pure and Applied Sciences, 11(2), 72–80. https://doi.org/10.4314/bajopas.v11i2.9
  12. Jan, S. A., Tabassum, R., & Bashir, H. (2022). Speed breeding methods for soybean improvement: recent advances. Journal of Nutritional Health & Food Engineering, 12(2), 41–42. https://doi.org/10.15406/jnhfe.2022.12.00354
  13. Jiang, G.-L., Rutto, L. K., & Ren, S. (2018). Evaluation of Soybean Lines for Edamame Yield Traits and Trait Genetic Correlation. HortScience, 53(12), 1732–1736. https://doi.org/10.21273/HORTSCI13448-18
  14. Kamble, R. E., Pawar, V. S., & Veer, S. J. (2021). Health benefits of soybean and soybean based food products : A study. The Pharma Innovation Journal, 10(8), 1135–1138. https://www.thepharmajournal.com/archives/2021/vol10issue8/PartP/10-7-319-875.pdf
  15. Kuswantoro, H., Artari, R., Iswanto, R., & Imani, H. (2020). Family structure of F5 soybeans lines derived from soybean varieties with the main differences on seed size and maturity traits. Biodiversitas Journal of Biological Diversity, 21(6), 2576–2585. https://doi.org/10.13057/biodiv/d210630
  16. McNeece, B. T., Gillenwater, J. H., Li, Z., & Mian, M. A. R. (2021). Assessment of soybean test weight among genotypes, environments, agronomic and seed compositional traits. Agronomy Journal, 113(3), 2303–2313. https://doi.org/10.1002/agj2.20665
  17. Mustikawati, D. R., & Endriani. (2020). The performance of growth and yield component of soybean varieties in Margodadi village, Ambarawa sub-district, Pringsewu regency, Lampung province, Indonesia. IOP Conference Series: Earth and Environmental Science, 482(1), 1–5. https://doi.org/10.1088/1755-1315/482/1/012048
  18. Nilahayati, & Putri, L. A. P. (2015). Evaluasi Keragaman Karakter Fenotipe Beberapa Varietas Kedelai (Glycine max L.) di Daerah Aceh Utara. Medan: Fakultas Pertanian Universitas Sumatera Utara.
  19. Nilahayati, Nazimah, Handayani, R. S., Syahputra, J., & Rizky, M. (2022). Agronomic diversity of several soybean putative mutant lines resulting from gamma-rays irradiation in M6 generation. Nusantara Bioscience, 14(1), 34–39. https://doi.org/10.13057/nusbiosci/n140104
  20. Nugroho, A., Matra, D. D., Siregar, I. Z., Haneda, N. F., Istikorini, Y., Rahmawati, R., Amin, Y., & Siregar, U. J. (2021). Early growth evaluation and estimation of heritability in a sengon (Falcataria moluccana) progeny testing at Kediri, East Java, Indonesia. Biodiversitas Journal of Biological Diversity, 22(5), 2728-2736. https://doi.org/10.13057/biodiv/d220534
  21. Priyanto, S. B., Efendi, R., & Zainuddin, B. (2023). Genetic variability, heritability, and path analysis for agronomic characters in hybrid maize. Kultivasi, 22(1), 26–35. https://doi.org/10.24198/kultivasi.v22i1.38807
  22. Roessali, W., Ekowati, T., Prasetyo, E., & Mukson. (2019). Economic aspects of soybean farming sustainability in Central Java, Indonesia. IOP Conference Series: Earth and Environmental Science, 250, 012022. https://doi.org/10.1088/1755-1315/250/1/012022
  23. Sjamsijah, N. (2015). Kajian Interaksi Genotipe dengan Lingkungan Galur-Galur Harapan Kedelai Produksi Tinggi dan Berumur Genjah Di Jawa timur. Universitas Brawijaya Malang.
  24. Sjamsijah, N., & Poerwoko, M. S. (2010). Seleksi Generasi Segregasi Awal Pada Perakitan Kedelai Unggul Baru Berdaya Hasil Tinggi dan Berumur Genjah. Jurnal Ilmiah Inovasi Politeknik Negeri Jember, 10(1), 1–6. https://repository.unej.ac.id/bitstream/handle/123456789/90974/Seleksi Generasi Segregasi awal pada perakitan kedelai unggul b.pdf?sequence=1
  25. Sjamsijah, N., Rahayu, S., Suharjono, S., Rosdiana, E., & Santika, P. (2020). Yield Enhancement of Soybean (Glycine max l. Merill) in Genotypes ‘Polije-4’ and ‘Polije-5’ through Backcross with Large Seed Donor Parent. IOP Conference Series: Earth and Environmental Science, 411(1), 1–6. https://doi.org/10.1088/1755-1315/411/1/012008
  26. Syukur, M., Sujiprihati, S., & Yunianti, R. (2015). Teknik Pemuliaan Tanaman. Penebar Swadaya. https://books.google.co.id/books/about/Teknik_Pemuliaan_Tanaman.html?id=icNUCgAAQBAJ&redir_esc=y
  27. Szostak, B., Głowacka, A., Kasiczak, A., Kiełtyka-Dadasiewicz, A., Bąkowski, M. (2019). Nutritional value of soybeans and the yield of protein and fat depending on the cultivar and nitrogen application. Journal of Elementology, 25(1), 45–57. https://doi.org/10.5601/jelem.2019.24.2.1769
  28. Tabasum, A., Saleem, M., & Aziz, I. (2010). Genetic Variability, Trait Association And Path Analysis Of Yield And Yield Components In Mungbean (Vigna radiata (L.) Wilczek). Pakistan Journal of Botany, 42(6), 3915–3924. http://mail.pakbs.org/pjbot/PDFs/42(6)/PJB42(6)3915.pdf
  29. Vieira, C. C., & Chen, P. (2021). The numbers game of soybean breeding in the United States. Crop Breeding and Applied Biotechnology, 21(S), e387521S10. https://doi.org/10.1590/1984-70332021v21sa23
  30. Yuhong, G., Rasheed, A., Zhuo, Z., Gardiner, J. J., Ilyas, M., Akram, M., Piwu, W., Gillani, S. F. A., Batool, M., & Jian, W. (2021). Role of conventional and molecular techniques in soybean yield and quality improvement: A critical review. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(4), 12555. https://doi.org/10.15835/nbha49412555