Coconut Shell Carbonization Process Using Smokeless Kiln

##plugins.themes.academic_pro.article.main##

Rudi Kurniawan Arief
Armila Armila
Arie Liswardi
Hanafi Yahya
Mahammad Salman Warimani
Perdana Putera

Abstract

Proper processing of coconut shell charcoal can be highly economically and environmentally valuable. The two most common uses of coconut shell charcoal are activated carbon and briquettes, obtained through carbonization. However, traditional carbonization methods involving kilns can produce excessive smoke, polluting the environment and disrupting human activities. A carbonization kiln that produces less smoke is required to address this issue. In this study, a kiln made from a steel drum with a sealer belt was fabricated to trap burning smoke inside the kiln. The results showed that adding this belt effectively reduced the smoke produced, making it more eco-friendly. Regarding charcoal production efficiency, different weigh coconut shells were burnt to produce charcoal. The result showed that burning 25 kg of coconut shell was optimal, producing a 48% charcoal content.

##plugins.themes.academic_pro.article.details##

Author Biographies

Rudi Kurniawan Arief, Universitas Muhammadiyah Sumatera Barat

Department of Mechanical Engineering

Armila Armila, Muhammadiyah University of Sumatera Barat

Department of Mechanical Engineering

Arie Liswardi, Muhammadiyah University of Sumatera Barat

Department of Mechanical Engineering

Hanafi Yahya, Muhammadiyah University of Sumatera Barat

Department of Mechanical Engineering

Mahammad Salman Warimani, Arvind Gavali College of Engineering

Department of Mechanical Engineering

Perdana Putera, Politeknik Pertanian Negeri Payakumbuh

Department of Agricultural Technology

How to Cite
Arief, R. K., Armila, A., Liswardi, A., Yahya, H., Warimani, M. S., & Putera, P. (2023). Coconut Shell Carbonization Process Using Smokeless Kiln. Journal of Applied Agricultural Science and Technology, 7(2), 82-90. https://doi.org/10.55043/jaast.v7i2.135

References

  1. Ahmad, R. K, Sulaiman, S. A., Yusup, S., Dol, S. S., Inayat, M., & Umar, H. A. (2022). Exploring the potential of coconut shell biomass for charcoal production. Ain Shams Engineering Journal, 13(1), 101499. https://doi.org/10.1016/j.asej.2021.05.013
  2. Arena, N., Lee, J., & Clift, R. (2016). Life Cycle Assessment of activated carbon production from coconut shells. Journal of Cleaner Production, 125, 68–77. https://doi.org/10.1016/j.jclepro.2016.03.073
  3. Badan Pusat Statistik. (2021). Luas Tanaman Perkebunan Menurut Provinsi 2019-2021. https://www.bps.go.id/indicator/54/131/1/luas-tanaman-perkebunan-menurut-provinsi.html
  4. Belu, R. (2020). Building Electrical Systems and Distribution Networks: An Introduction (1st ed.). CRC Press. https://doi.org/https://doi.org/10.1201/9780429173455
  5. Budi, E. (2011). Tinjauan Proses Pembentukan dan Penggunaan Arang Tempurung Kelapa Sebagai Bahan Bakar. Jurnal Penelitian Sains, 14(4). https://doi.org/10.56064/jps.v14i4.201
  6. Doe, B., Dacosta Aboagye, P., Osei-Owusu, P., Amoah, T., Aidoo, A., & Amponsah, N. (2022). Towards Circular Economy and Local Economic Development in Ghana: Insights from the Coconut Waste Value Chain. Circular Economy and Sustainability. https://doi.org/10.1007/s43615-022-00182-w
  7. Ekalinda, O. (2001). TEKNOLOGI PEMBUATAN ARANG TEMPURUNG KELAPA. Balai Pengkajian Teknologi Pertanian Riau. http://riau.litbang.pertanian.go.id/ind/images/stories/PDF/arang.pdf
  8. Hudaya, N., & Hartoyo. (1990). Pembuatan Arang Redemen Tinggi dari Tempurung Kelapa dengan Klin Drum. Jurnal Penelitian Hasil Hutan, 7(4), 134–138. https://doi.org/10.20886/jphh.1990.7.4.134%20-%20138
  9. Ikumapayi, O. M., Akinlabi, E. T., Majumdar, J. D., & Akinlabi, S. A. (2020). Chapter four - Applications of coconut shell ash/particles in modern manufacturing: a case study of friction stir processing. In K. Kumar & J. P. B. T.-M. M. P. Davim (Eds.), Woodhead Publishing Reviews: Mechanical Engineering Series (pp. 69–95). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-819496-6.00004-X
  10. Indonesia, C. G. in P. (2021). Indonesian Coconut Shell Charcoal Are Constantly In Demand By The International Market. https://kemlu.go.id/penang/en/news/13290/indonesian-coconut-shell-charcoal-are-constantly-in-demand-by-the-international-market
  11. Intara, Y. I., Budiyanto, Caniago, Z., & Aldo, R. (2021). Development of Type Drum Kiln to Make Charcoal and Wood Vinegar for The Utilization of Coconut Shell Waste BT - Proceedings of the International Seminar on Promoting Local Resources for Sustainable Agriculture and Development (ISPLRSAD 2020). 413–419. https://doi.org/10.2991/absr.k.210609.064
  12. Jamilatun, S., & Setyawan, M. (2014). Pembuatan Arang Aktif dari Tempurung Kelapa dan Aplikasinya untuk Penjernihan Asap Cair. Spektrum Industri, 12(1), 73–83. https://doi.org/http://dx.doi.org/10.12928/si.v12i1.1651
  13. Khambali, I., Priyanto, B., Asih, R., Baqiya, M., Ramli, M., Osman, N., Tunmee, S., Nakajima, H., Triwikantoro, T., Zainuri, M., & Darminto, D. (2022). N-Doped rGO-Like Carbon Prepared from Coconut Shell: Structure and Specific Capacitance. Journal of Renewable Materials, 11(4), 1–11. https://doi.org/10.32604/jrm.2023.025026
  14. Leman, A. M., Muzarpar, M. S., Maghpor, M. M., Rahman, K. A., Mat Hassan, N. N., Misdan, N., & Zakaria, S. (2021). Development of Palm Shell Base Activated Carbon for Volatile Organic Compounds (VOCs) Emissions Absorption. International Journal of Advanced Technology in Mechanical, Mechatronics and Materials, 2(1), 35–45. https://doi.org/10.37869/ijatec.v2i1.42
  15. Lutfi, M., Hanafi, Susilo, B., Prasetyo, J., Sutan, S. M., & Prajogo, U. (2021). Characteristics of activated carbon from coconut shell (Cocos nucifera) through chemical activation process. IOP Conference Series: Earth and Environmental Science, 733, 12134. https://doi.org/10.1088/1755-1315/733/1/012134
  16. Manatura, K. (2021). Novel performance study of recirculated pyro-gas carbonizer for charcoal production. Energy for Sustainable Development, 64, 8–14. https://doi.org/10.1016/j.esd.2021.07.002
  17. Maryono, Sudding, & Rahmawati. (2013). Pembuatan dan Analisis Mutu Briket Arang Tempurung Kelapa Ditinjau dari Kadar Kanji. Jurnal Chemica, 14(1), 74–83. https://doi.org/https://doi.org/10.35580/chemica.v14i1.795
  18. Ningsih, A., & Hajar, I. (2019). Analisis Kualitas Briket Arang Tempurung Kelapa Dengan Bahan Perekat Tepung Kanji Dan Tepung Sagu Sebagai Bahan Bakar Alternatif. Jurnal Teknologi Terpadu, 7(2), 101–110. https://doi.org/10.32487/jtt.v7i2.708
  19. Nurdin, A., & Nurdiana, J. (2017). EVALUASI PEMBUATAN ARANG AKTIF DARI TEMPURUNG KELAPA. Jurnal Teknologi Lingkungan, 1(2), 1–3.
  20. Nyamful, A., Nyogbe, E., Mohammed, L., Zainudeen, N., Darkwa, S., Phiri, I., Mohammed, M., & Ko, J. (2021). Processing and Characterization of Activated Carbon from Coconut Shell and Palm Kernel Shell Waste by H3PO4 Activation. Ghana Journal of Science, 61(2), 91–104. https://doi.org/10.4314/gjs.v61i2.9
  21. Parshiwanikar, T., & Handa, C. (2022). Design and Development of Process Equipments for Extraction of Coconut Shell’s Activated Carbon, Bio Oil and Syngas. IOP Conf. Series: Materials Science and Engineering; International Conference on Advances in Mechanical Engineering-2022 (ICAME-2022), 1–7. https://doi.org/10.1088/1757-899X/1259/1/012019
  22. Pujasakti, D., & Widayat, W. (2018). KARAKTERISTIK BRIKET CETAK PANAS BERBAHAN KAYU SENGON DENGAN PENAMBAHAN ARANG TEMPURUNG KELAPA. Sainteknol: Jurnal Sains Dan Teknologi, 16(1), 21–31. https://doi.org/10.15294/sainteknol.v16i1.13717
  23. Sangsuk, S., Buathong, C., & Suebsiri, S. (2020). High-energy conversion efficiency of drum kiln with heat distribution pipe for charcoal and biochar production. Energy for Sustainable Development, 59, 1–7. https://doi.org/10.1016/j.esd.2020.08.008
  24. Sanjaya, G. O. N., Joga, J. B. T., & Prasetya, B. (2016). EXPORT ENHANCEMENT PLAN OF COCONUT SHELL CHARCOAL BRIQUETTE BY PT. INDRATMA SAHITAGUNA SEMARANG. JOBS; Journal of Bussiness Studies, 2(1). https://doi.org/10.32497/jobs.v2i1.641
  25. Schrȍder, E., Christine, W., Klaus, T., & Vander, T. (2006). Experiments on generation of activated carbon. Anal. Appl. Pyrolysis, 79(1), 106–111. https://doi.org/10.1016/j.jaap.2006.10.015
  26. Setyawan, B., & Ulfa, R. (2019). Analisis mutu briket arang dari limbah biomassa campuran kulit kopi dan tempurung kelapa dengan perekat tepung tapioka. Edubiotik: Jurnal Pendidikan, Biologi Dan Terapan, 4(2), 110–120. https://doi.org/10.33503/ebio.v4i02.508
  27. Soka, O., & Oyekola, O. (2020). A feasibility assessment of the production of char using the slow pyrolysis process. Heliyon, 6(7). https://doi.org/10.1016/j.heliyon.2020.e04346
  28. Soolany, C. (2017). ANALISIS KEHILANGAN PANAS PADA PROSES PRODUKSI ARANG TEMPURUNG KELAPA DENGAN DRUM KILN. Jurnal Teknologi, 10(2), 121–127. https://doi.org/https://journal.akprind.ac.id/index.php/jurtek/article/view/1419
  29. Suhartana. (2006). PEMANFAATAN TEMPURUNG KELAPA SEBAGAI BAHAN BAKU ARANG AKTIF DAN APLIKASINYA UNTUK PENJERNIHAN AIR SUMUR DI DESA BELOR KECAMATAN NGARINGAN KABUPATEN GROBOGAN. Berkala Fisika, 9(3), 151–156. https://doi.org/https://ejournal.undip.ac.id/index.php/berkala_fisika/article/view/3094
  30. Susanto, A., Abdullah, Elma, M., & Putra, M. D. (2022). PALM KERNEL SHELL ACTIVATED CARBON USING PHOSPHORIC ACID FOR CRUDE PALM OIL CLARIFICATION: PROPERTIES AND APPLICATION. European Chemical Bulletin, 11(4), 1–11. https://doi.org/10.31838/ecb/2022.11.04.001