The Design and Building of Medium Capacity Drying House for Bokar

##plugins.themes.academic_pro.article.main##

Sri Aulia Novita
Hendra Hendra
Perdana Putera
Fithra Herdian
Muhammad Makky
Khandra Fahmi

Abstract

Bokar, processed rubber material, is latex obtained from rubber trees of community plantations. The quality of latex can be identified from its features which are white, relatively soft, and odorless. The purpose of this research was to design a simple rubber sheet drying house and examine the quality of dry rubber under Indonesian National Standard. Bokars are processed using a liquid smoke coagulant with a concentration of 10-15% and it obtained a clean white rubber although it has a slight smoke smell. Before drying, Bokar had ground to gain the thickness of the unsmoked sheet/ USS around 3-5 mm. The components of the drying house include the drying room, heating room, heater, thermometer, blower, plenum chamber, ventilation, drying room door, and electric motor. The capacity of the drying house is 200 kg of rubber sheet, with a drying temperature of 35 – 46oC and 6 hours drying time. The rubber produced has good quality with average dry rubber content (DRC) was 73.75%.

##plugins.themes.academic_pro.article.details##

Author Biographies

Sri Aulia Novita, Politeknik Pertanian Negeri Payakumbuh

Department of Agricultural Mechanisation Technology

Hendra Hendra, Politeknik Pertanian Negeri Payakumbuh

Department of Computer Engineering Technology

Perdana Putera, University of Nottingham

Department of Electrical and Electronics Engineering

Fithra Herdian, Politeknik Pertanian Negeri Payakumbuh

Department of Agricultural Mechanisation Technology

Muhammad Makky, Andalas University

Department of Agricultural Technology

Khandra Fahmi, Andalas University

Department of Agricultural Technology

How to Cite
Novita, S. A., Hendra, H., Putera, P., Herdian, F., Makky, M., & Fahmi, K. (2021). The Design and Building of Medium Capacity Drying House for Bokar. Journal of Applied Agricultural Science and Technology, 5(1), 50-61. https://doi.org/10.32530/jaast.v5i1.12

References

  1. Breymayer, M., Pass, T., Mühlbauer, W., Amir, E. J., & Mulato, S. (1993). Solar-assisted smokehouse for the drying of natural rubber on small-scale Indonesian farms. Renewable Energy, 3(8), 831–839. https://doi.org/10.1016/0960-1481(93)90039-J
  2. BSN (Badan Standardisasi Nasional). (2000). Standar Nasional Indonesia SNI 06-1903-2000: Standart Indonesian Rubber. Jakarta (Indonesia): BSN.
  3. BSN. (2002). Bahan Olahan Karet. SNI 06-2047-2002. Jakarta, Indonesia: BSN.
  4. Budiman, H.S.P. (2012). Budidaya Karet Unggul. Yogyakarta, Indonesia: Pustaka Baru Press. 185-191.
  5. Dejchanchaiwong, R., Arkasuwan, A., Kumar, A., & Tekasakul, P. (2016). Mathematical modeling and performance investigation of mixed-mode and indirect solar dryers for natural rubber sheet drying. Energy for Sustainable Development, 34, 44–53. https://doi.org/10.1016/j.esd.2016.07.003
  6. Ditjenbun. (2015). Statistik perkebunan Indonesia 2014-2016. Jakarta, Indonesia: Kementerian Pertanian.
  7. Ekphon, A., Ninchuewong, T., Tirawanichakul, S., & Tirawanichakul, Y. (2013). Drying Model, Shrinkage and Energy Consumption Evaluation of Airdried Sheet Rubber Drying System for Small Enterprise. Advanced Materials Research, 622-623, 1135–1139. https://doi.org/10.4028/www.scientific.net/AMR.622-623.1135
  8. Jayanthy, T., & Sankaranarayanan, P. E. (2005). Measurement of Dry Rubber Content in Latex Using Microwave Technique. Measurement Science Review, 5(3), 50–54.
  9. Jitjack, K., Thepa, S., Sudaprasert, K., & Namprakai, P. (2016). Improvement of a rubber drying greenhouse with a parabolic cover and enhanced panels. Energy and Buildings, 124, 178–193. https://doi.org/10.1016/j.enbuild.2016.04.030
  10. Karseno, Darmadji, P. & Rahayu, K. (2001). Daya Hambat Asap Cair Kayu Karet terhadap Bakteri Pengkontaminan Lateks dan Ribbed Smoke Sheet. Agritech, 21(1), 10–15.
  11. Kumar, R. R., Hussain, S. N., & Philip, J. (2007). Measurement of Dry Rubber Content of Natural Rubber Latex with A Capacitive Transducer. Journal of Rubber Research, 10(1), 17–25.
  12. Ng, M. X., Tham, T. C., Ong, S. P., & Law, C. L. (2015). Drying Kinetics of Technical Specified Rubber. Information Processing in Agriculture, 2(1), 64–71. https://doi.org/10.1016/j.inpa.2015.05.001
  13. Novita, S. A. (2011). Kinerja dan Analisis Alat Penghasil Asap Cair Dengan Bahan Baku Limbah Pertanian. Jurnal Pascasarjana Universitas Andalas.
  14. Ortiz-Rodríguez, N. M., Marín-Camacho, J. F., González, A. L., & García-Valladares, O. (2021). Drying kinetics of natural rubber sheets under two solar thermal drying systems. Renewable Energy, 165, 438–454. https://doi.org/10.1016/j.renene.2020.11.035
  15. Pianroj, Y., Werapun, W., Inthapan, J., Jumrat, S., & Karrila, S. (2018). Mathematical modeling of drying kinetics and property investigation of natural crepe rubber sheets dried with infrared radiation and hot air. Drying Technology, 36(12), 1436–1445. https://doi.org/10.1080/07373937.2017.1407939
  16. Solichin, M., & Anwar, A. (2003). Pengaruh penggumpalan lateks, perendaman dan penyemprotan bokar dengan asap cair terhadap bau bokar, sifat teknis, dan sifat fisik vulkanisat. Jurnal Penelitian Karet, 21, 45–61.
  17. Tanwanichkul, B., Thepa, S., & Rordprapat, W. (2013). Thermal modeling of the forced convection Sandwich Greenhouse drying system for rubber sheets. Energy Conversion and Management, 74, 511–523. https://doi.org/10.1016/j.enconman.2013.06.020
  18. Tedjaputra, N., Solichin, M., & Anwar, A. (2007). Penggunaan asap cair Deorub dalam pengolahan RSS. Jurnal Penelitian Karet, 25(1), 83–94.
  19. Tekasakul, P., Kumar, A., Yuenyao, C., Kirirat, P., & Prateepchaikul, G. (2017). Assessment of sensible heat storage and fuel utilization efficiency enhancement in rubber sheet drying. Journal of Energy Storage, 10, 67–74. https://doi.org/10.1016/j.est.2017.01.002
  20. Tham, T. C., Hii, C. L., Ong, S. P., Chin, N. L., Abdullah, L. C., & Law, C. L. (2014). Technical review on crumb rubber drying process and the potential of advanced drying technique. Agriculture and Agricultural Science Procedia, 2, 26–32, https://doi.org/10.1016/j.aaspro.2014.11.005