Performance Test of Coconut Shell Grinding Machine For Pyrolysis Process

##plugins.themes.academic_pro.article.main##

Sri Aulia Novita
Santosa Santosa
Nofialdi Nofialdi
Andasuryani Andasuryani
Ahmad Fudholi

Abstract

Coconut shell is a solid waste of biomass from processed coconuts separated from the flesh. Coconut shells can be reprocessed into products of high economic value. Coconut shells can be processed for bio-oil production via high-temperature pyrolysis. In the pyrolysis process, the coconut shell raw materials are reduced in size to facilitate combustion. The aim of this research was to test the performance of the modified coconut shell grinding machine, determine the effect of water content on the milling process, achieve coconut shell sizes of 3, 5, and 10 mm to enhance the pyrolysis process, and analyze the economics of grinding machine engineering. The size reduction process was carried out using a custom-designed coconut shell grinder that was altered in its sieve section. The sieve sections had diameters of 10, 5, and 3 mm. The coconut shell to be ground had a moisture content of 8–10%. The grinding machine capacity varies with each size, namely 10 mm, 5 mm, and 3 mm, achieving throughput rates of 14.892 kg/h, 7.214 kg/h, and 2.94 kg/hour, respectively. The resulting yield was notably high, ranging from 95 to 96.780%, and the associated yield loss remained low, between 3.2% and 4.8%. During the material size tests, the working RPM was observed at 630.6 for 10 mm, 711.2 for 5 mm, and 1017.18 for 3 mm, and these RPM variations influence the grinding speed.

##plugins.themes.academic_pro.article.details##

Author Biographies

Sri Aulia Novita, Universitas Andalas

Doctoral Student Agricultural Science Program

Santosa Santosa, Universitas Andalas

Department of Agricultural Engineering

Nofialdi Nofialdi, Universitas Andalas

Department of Agribusiness

Andasuryani Andasuryani, Universitas Andalas

Department of Agricultural Engineering

Ahmad Fudholi, National Research and Innovation Agency (BRIN)

Research Centre for Electrical Power and Mechatronics

How to Cite
Novita, S. A., Santosa, S., Nofialdi, N., Andasuryani, A., & Fudholi, A. . (2024). Performance Test of Coconut Shell Grinding Machine For Pyrolysis Process. Journal of Applied Agricultural Science and Technology, 8(1), 65-77. https://doi.org/10.55043/jaast.v8i1.211

References

  1. Ariesta, C. V., Iswanto, & Alvero, Y.(2022). Rancang Bangun Mesin Penghancur Arang Tempurung Kelapa. Retrieved from http://repository.polman-babel.ac.id/id/eprint/684/1/FIKS-MESIN%20PENGHANCUR%20ARANG-WATERMARK.pdf
  2. Ariffin, S. A. S., Lin, S. C., & Guan, C. C. (2020). Design and Development of Young Coconut Shell and Husks Shredder Machine. IOP Conference Series: Materials Science and Engineering, 864(1). https://doi.org/10.1088/1757-899X/864/1/012108
  3. Azeta, O., Ayeni, A. O., Agboola, O., & Elehinafe, F. B. (2021). A review on the sustainable energy generation from the pyrolysis of coconut biomass. Scientific African, 13, e00909. https://doi.org/10.1016/j.sciaf.2021.e00909
  4. Bello, S. A., Agunsoye, J. O. and. Hassan, S. B. (2015). Synthesis of coconut shell nanoparticles via a top down approach: Assessment of milling duration on the particle sizes and morphologies of coconut shell nanoparticles. Materials Letters, 159, 514–519. https://doi.org/10.1016/j.matlet.2015.07.063
  5. Dziedzic, K., Mudryk, K., Hutsol, T., & Dziedzic, B. (2018). Impact of grinding coconut shell and agglomeration pressure on quality parameters of briquette. Engineering for Rural Development, 17, 1884–1889. https://doi.org/10.22616/ERDev2018.17.N461
  6. Ikumapayi, O. M., & Akinlabi, E. T. (2019a). Data showing the effects of vibratory disc milling time on the microstructural characteristics of Coconut Shell Nanoparticles (CS-NPs). Data in Brief, 22, 537–545. https://doi.org/10.1016/j.dib.2018.12.067
  7. Ikumapayi, O. M., & Akinlabi, E. T. (2019b). Image processing and particle size analysis of coconut shell nanoparticles. International Journal of Civil Engineering and Technology, 10(2), 2475–2482. https://www.academia.edu/download/59110090/IJCIET_10_02_24520190502-92844-61y4va.pdf
  8. Jabal, S. N. A., Seok, Y. B., & Hoon, W. F. (2016). The Potential of Coconut Shell Powder (Csp) and Coconut Shell Activated Carbon (Csac) Composites As Electromagnetic Interference (Emi) Absorbing Material. Malaysian Journal of Analytical Sciences, 20(2), 444–451. https://www.researchgate.net/profile/Yew-Been-Seok-2/publication/301920853_The_potential_of_coconut_shell_powder_CSP_and_coconut_shell_activated_carbon_CSAC_composites_as_electromagnetic_interference_EMI_absorbing_material/links/57b52f6d08aeddbf36e6f79d/The-potential-of-coconut-shell-powder-CSP-and-coconut-shell-activated-carbon-CSAC-composites-as-electromagnetic-interference-EMI-absorbing-material.pdf
  9. Kaczor, Z., Buliński, Z., & Werle, S. (2020). Modelling approaches to waste biomass pyrolysis: a review. Renewable Energy, 159, 427–443. https://doi.org/10.1016/j.renene.2020.05.110
  10. Kirby, M., Lewis, B., Peterson, B., Anggono, J., & Bradley, W. (2019). The effect of coconut shell powder as functional filler in polypropylene during compounding and subsequent molding. E3S Web of Conferences, 130. https://doi.org/10.1051/e3sconf/201913001021
  11. Kumar, N., Malhotra, N., & Nagar, B. (2017). Modeling and Analysis of Coconut Shell Grinding Machine for Utilization of Temple Waste for Specific Application As Manufacturing of Incense Sticks/Cones. International Education and Research Journal (IERJ), 3(6). Retrieved from http://ierj.in/journal/index.php/ierj/article/view/1157.
  12. Liyanage, C. D., & Pieris, M. (2015) A Physio-Chemical Analysis of coconut shell powder. Procedia Chemistry, 16, 222-228. https://doi.org/10.1016/j.proche.2015.12.045
  13. Mohan, P. B., Thiruppayhi, R., Sampath, K. S., Mohamed, Y. A. Y., & Pavithran, T. (2021). Design andFabrication of Compact Coconut Shell Crusher. International Journal of Research in Engineering, Science and Management, 4(6), 67–70.
  14. Novita, S. A., Djinis, M. E., Melly, S., & Putri, S. K. (2014). Processing Coconut Fiber and Shell to Biodiesel. International Journal on Advanced Science, Engineering and Information Technology, 4(5), 386-388. https://doi.org/10.18517/ijaseit.4.5.440
  15. Novita, S. A., Santosa, S., Nofialdi, N., Andasuryani, A., Fudholi, A., & Putera, P. (2022). Fast Pyrolysis of Biomass with a Concentrated Solar Power: a Review. Journal of Applied Agricultural Science and Technology, 6(2), 180-191. https://doi.org/10.55043/jaast.v6i2.62
  16. Nustini, Y., & Allwar, A. (2019). Pemanfaatan Limbah Tempurung Kelapa Menjadi Arang Tempurung Kelapa dan Granular Karbon Aktif Guna Meningkatkan Kesejahteraan Desa Watuduwur, Bruno, Kabupaten Purworejo. Prosiding Seminar Nasional Mewujudkan Masyarakat Madani dan Lestari seri 9 “Pemukiman Cerdas dan Tanggap Bencana”. Yogyakarta, Indonesia. 24 Oktober 2019. https://dspace.uii.ac.id/handle/123456789/17334
  17. Rosi, M., & Viridi, S. (2018). Design and Fabrication of a Simple Laboratory Ball Mill for Powder Coconut Shell Preparation as Raw Material of Biochar. IOP Conference Series: Materials Science and Engineering, 434(1). https://doi.org/10.1088/1757-899X/434/1/012221
  18. Rout, T. K. (2013). Pyrolysis of coconut shell [Thesis]. https://ethesis.nitrkl.ac.in/5346/1/211CH1036.pdf
  19. Rout, T., Pradhan, D., Singh, R. K., & Kumari, N. (2016). Journal of Environmental Chemical Engineering Exhaustive study of products obtained from coconut shell pyrolysis. Biochemical Pharmacology, 2015. https://doi.org/10.1016/j.jece.2016.02.024
  20. Sa’diyah, K., Rohman, F., Harsanti, W., Nugraha, I., & Febrianto, N. A. (2018). Pyrolysis of Coconut Coir and Shell as Alternative Energy Source. Jurnal Bahan Alam Terbarukan, 7(2), 115–120. https://doi.org/10.15294/jbat.v7i2.11393
  21. Shen, J., Wang, X. S., Garcia-Perez, M., Mourant, D., Rhodes, M. J., & Li, C. Z. (2009). Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel, 88(10), 1810-1817. https://doi.org/10.1016/j.fuel.2009.05.001
  22. Sudding, & Jamaluddin. (2016). The Processing Of Coconut Shell Based On Pyrolysis Technology To Produce Reneweable Energy Sources. International Conference on Mathematics, Science, Technology, Education, and Their Applications. Makassar, Indonesia. 3 – 4 October 2016. https://ojs.unm.ac.id/icmstea/article/download/3565/1976
  23. Sugumar, M., Magibalan, S., & Chandramohan, V. (2021). Study of Mechanical Properties of Coconut Shell Powder. International Journal of Mechanical Engineering, 6(3), 1188–1192. https://kalaharijournals.com/resources/DEC_133.pdf
  24. Suhardiyono, L. (1988). Tanaman Kelapa Budidaya Dan Pemanfaatannya. Yogyakarta: Kanisius.
  25. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol produc- tion: a review. Bioresource Technology, 83(1), 1-11. https://doi.org/10.1016/S0960- 8524(01)00212-7
  26. Surasno, & Ihlas, A. (2019). Failure Analysis of Blade on Coconut Shell Crusher Machine. IOP Conference Series: Materials Science and Engineering, 547(1). https://doi.org/10.1088/1757-899X/547/1/012061
  27. Udhayasankar, R., & Karthikeyan, B. (2015). A review on coconut shell reinforced composites. International Journal of ChemTech Research, 8(11), 624–637. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiX_J29g-iBAxXHe2wGHSSNAH4QFnoECAgQAQ&url=https%3A%2F%2Fsphinxsai.com%2F2015%2Fch_vol8_no11%2F3%2F(624-637)V8N11CT.pdf&usg=AOvVaw1IszDbOeulRW-GektBbWMD&opi=89978449
  28. Wang, S., Dai, G., Yang, H., & Luo, Z. (2017). Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science, 62, 33–86. https://doi.org/10.1016/j.pecs.2017.05.004
  29. Yuliati, Santosa, H., & Mulyana, I. J. (2019). Coconut shell breaker machine. AIP Conference Proceedings, 2114, 1-6. https://doi.org/10.1063/1.5112475