Diversity of Pests and Natural Enemies in Rice Fields in Kiniar Village, East Tondano District, North Sulawesi-Indonesia

##plugins.themes.academic_pro.article.main##

Parluhutan Siahaan
Saroyo
Agustina
Susan

Abstract

A study was conducted in Kiniar Village, East Tondano District, North Sulawesi, to investigate the variety of pests and their natural adversaries in rice fields. The primary objective of this research was to ascertain the count of insect that act as pests, the number of natural enemy, diversity index, dominance index, and species relative abundance of insect pests and natural enemies in rice fields in Kiniar Village. The results showed that there are 40 insects and spider from 29 families and eight orders in local rice cultivation in Kiniar Village. These species were further categorized into two classes, consisting of 20 pests and 20 natural enemies. The diversity index calculated for all species was 2.99, with separate values of 2.36 for insect pests and 2.42 for natural enemies. Regarding the abundance index, Leptocorisa acuta emerged as the primary pest species, boasting the highest index value at 28.86%, while Tetragnatha sp. stood out as the most prominent natural enemy, with a substantial index value of 32.17%. The dominance index, on the other hand, was determined to be 0.08, indicating that no single insect species exerted dominant control over rice cultivation in Kiniar Village. The diversity of natural enemies and pests is in the medium category. There are no species that dominate the rice fields in Kiniar village, either pests or natural enemies.

##plugins.themes.academic_pro.article.details##

Author Biographies

Parluhutan Siahaan, Sam Ratulangi University

Department of Biology

Saroyo, Sam Ratulangi University

Department of Biology

Agustina, Sam Ratulangi University

Department of Biology

Susan, Sam Ratulangi University

Department of Biology

How to Cite
1.
Siahaan P, Saroyo S, Tangapo AM, Mambu SM. Diversity of Pests and Natural Enemies in Rice Fields in Kiniar Village, East Tondano District, North Sulawesi-Indonesia. J. appl. agricultural sci. technol. [Internet]. 2024May27 [cited 2025Jan.21];8(2):200-1. Available from: http://jaast.org/index.php/jaast/article/view/226

References

  1. Abraços-Duarte, G., Ramos, S., Valente, F., Borges da Silva, E., & Figueiredo, E. (2021). Functional Response and Predation Rate of Dicyphus cerastii Wagner (Hemiptera: Miridae). Insects, 12(6), 530. http://dx.doi.org/10.3390/insects12060530.
  2. Adhikari, S., & Menalled, F. D. (2020). Supporting Beneficial Insects for Agricultural Sustainability: The Role of Livestock-Integrated Organic and Cover Cropping to Enhance Ground Beetle (Carabidae) Communities. Agronomy, 10(8), 1210. http://dx.doi.org/10.3390/agronomy10081210.
  3. Bashir, M. A., Saeed, S., Sajjad, A., Khan, K. A., Ghramh, H. A., Shehzad, M. A., Mubarak, H., Mirza, N., Mahpara, S., Rehmani, M. I. A., & Ansari, M. J. (2019). Insect pollinator diversity in four forested ecosystems of southern Punjab, Pakistan. Saudi journal of biological sciences, 26(7), 1835–1842. https://doi.org/10.1016/j.sjbs.2018.02.007.
  4. Belsky, J., & Joshi, N. K. (2019). Impact of Biotic and Abiotic Stressors on Managed and Feral Bees. Insects, 10(8), 233. http://dx.doi.org/10.3390/insects10080233.
  5. Borror, D. J. Triplehorn, C. A., & Johnson, N. F. (1996). Pengenalan Pelajaran Serangga Edisi Keenam. Partosoedjono S, penerjemah; Brotowidjoyo MD, editor. Yogyakarta: Gadjah Mada University Press. Terjemahan dari: An Introduction to The Study of Insects.
  6. Chagnon, M., Kreutzweiser, D., Mitchell, E. A., Morrissey, C. A., Noome, D. A., & Van der Sluijs, J. P. (2015). Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environmental science and pollution research international, 22(1), 119–134. https://doi.org/10.1007/s11356-014-3277-x.
  7. Da Silva, V. F., dos Santos, A., Silveira, L. C. P., Tomazella, V. B., & Ferraz, R. M. (2022). Push-pull cropping system reduces pests and promotes the abundance and richness of natural enemies in brassica vegetable crops. Biological Control, 166, 104832 https://doi.org/10.1016/j.biocontrol.2021.104832
  8. Farina, A., Massimino Cocuzza, G. E. M., Suma, P., & Rapisarda, C. (2023). Can Macrolophus pygmaeus (Hemiptera: Miridae) Mitigate the Damage Caused to Plants by Bemisia tabaci (Hemiptera: Aleyrodidae). Insects, 14(2), 164. http://dx.doi.org/10.3390/insects14020164
  9. Frago, E., & Zytynska, S. (2023). Impact of herbivore symbionts on parasitoid foraging behaviour. Current Opinion in Insect Science, 57, 101027. https://doi.org/10.1016/j.cois.2023.101027.
  10. García, L. F., Núñez, E., Lacava, M., Silva, H., Martínez, S., & Pétillon, J. (2020). Experimental assessment of trophic ecology in a generalist spider predator: Implications for biocontrol in Uruguayan crops. Journal of Applied Entomology, 145(1-2), 82-91. https://doi.org/10.1111/jen.12811.
  11. GBIF. (2020). Tetragnatha latreille. Retrieved from https://www.gbif.org/species/8353100.
  12. Hajjar, M. J., Ahmed, N., Alhudaib, K. A., & Ullah, H. (2023). Integrated Insect Pest Management Techniques for Rice. Sustainability, 15(5), 4499. http://dx.doi.org/10.3390/su15054499.
  13. Hashim, N. A., Aziz, M. A., Basari, N., Saad, K., Jasmi, A. H., & Hamid, S. A. (2017) Diversity and Guild Structure of Insects During Rice Flowering Stage at a Selected Rice Field in Penang, Malaysia. Malaysian Applied Biology, 46(3), 161-169. https://core.ac.uk/download/pdf/162019173.pdf
  14. He, X., Qiao, Y., Sigsgaard, L., & Wu, X. (2020). The spider diversity and plant hopper control potential in the long-term organic paddy fields in sub-tropical area, China. Agriculture, Ecosystems & Environment, 295, https://doi.org/10.1016/j.agee.2020.106921.
  15. Hwang, J. H., Kim, S-H., Yoon, S., Jung, S., Kim, D. H., & Lee, W-H. (2022) Evaluation of Spatial Distribution of Three Major Leptocorisa (Hemiptera: Alydidae) Pests Using MaxEnt Model. Insects, 13(8), 750. https://doi.org/10.3390/insects13080750.
  16. Jauharlina, J., Hasnah, H., & Taufik, M. I. (2019). Diversity and Community Structure of Arthropods on Rice Ecosystem. AGRIVITA Journal of Agricultural Science, 41(2), 316–324. http://doi.org/10.17503/agrivita.v41i2.2160.
  17. Kumar, B., & Omkar. (2023). Insects in Environmental Engineering and Ecosystem Services. In: Omkar, (Eds). Insects as Service Providers. (pp. 11-35) Springer, https://doi.org/10.1007/978-981-19-3406-3_2.
  18. Litsinger, J. A., Barrion, A. T., Canapi, B. L., Libetario, E. M., Pantua, P. C., Cruz, C. G., Apostol, R. F., Lumaban, M. D., Bandong, J. P., Macatula, R. F. (2015). Leptocorisa rice seed bugs (Hemiptera: Alydidae) in Asia: A review. Philipp. Entomol. 29(1), 1–103. https://www.researchgate.net/publication/281450603_Leptocorisa_rice_seed_bugs_Hemiptera_Alydidae_in_Asia_A_review.
  19. Mendesil, E., Tefera, T., Blanco, C. A., Paula-Moraes, S. V., Huang, F., Viteri, D. M. & Hutchison, W. D. (2023). The invasive fall armyworm, Spodoptera frugiperda, in Africa and Asia: responding to the food security challenge, with priorities for integrated pest management research. J Plant Dis Prot, 130, 1175-1206. https://doi.org/10.1007/s41348-023-00777-x.
  20. Milosavljević, A., Morgan, D. J. W., Massie, R. E. & Hoddle. M. S. (2021). Density dependent mortality, climate, and Argentine ants affect population dynamics of an invasive citrus pest, Diaphorina citri, and its specialist parasitoid, Tamarixia radiata, in Southern California, USA. Biological Control, 159, 104627. https://doi.org/10.1016/j.biocontrol.2021.104627.
  21. Oo, S., Hmwe, K., Aung, N., Su, A., Soe, K., Mon, T., Lwin, K., Thu, M., Soe, T. & Htwe, M. (2020). Diversity of Insect Pest and Predator Species in Monsoon and Summer Rice Fields of Taungoo Environs, Myanmar. Advances in Entomology, 8, 117-129. https://doi.org/10.4236/ae.2020.83009.
  22. Pebrianti, H. D., Maryana, N., & Winasa, I. W. (2016). Keanekaragaman parasitoid dan artropoda predator pada pertanaman kelapa sawit dan padi sawah di Cindali, Kabupaten Bogor. Jurnal HPT Tropika, 16(2), 138-146. https://doi.org/10.23960/j.hptt.216138-146.
  23. Saksongmuang, V., Miyashita, T., Maneerat, T. & Bumrungsri, S. (2020). Population Dynamics and Prey Composition of Tetragnatha Spiders (Araneae: Tetragnathidae) in Semi-organic Rice Fields, Songkhla Province, Southern Thailand. Songklanakarin J. Sci. Technol., 42(4), 725 – 733. https://doi.org/10.14456/sjst-psu.2020.92.
  24. Sánchez-Bayo, F. (2021). Indirect Effect of Pesticides on Insects and Other Arthropods. Toxics, 9(8), 177. Retrieved from http://dx.doi.org/10.3390/toxics9080177.
  25. Siahaan, P., Saroyo, & Langoy, M. L. D. (2023). Host diversity of Beauveria bassiana (Balsamo) vuillemin in rice plantations in Bolaang Mongondow Regency. AIP Conf. Proc. 2023- The 2nd International Conference on Natural Sciences, Mathematics, Applications, Research, And Technology. Manado, Indonesia. 21–22 October 2021. https://doi.org/10.1063/5.0118499.
  26. Siregar, A. Z., Tulus, & Lubis, K. S. (2017). Diversity of Pest Insects in Paddy Field Cultivation: A Case Study in Lae Parira, Dairi. International Journal of Trend in Research and Development, 4(5), 58 – 62. http://www.ijtrd.com/papers/IJTRD10942.pdf.
  27. Sulaiman, N., Isahak, A., Sahid, I. B., & Maimon, A. (2013). Diversity of pest and non-pest insects in an organic paddy field cultivated under the System of Rice Intensification (SRI): A case study in Lubok China, Melaka, Malaysia. Journal of Food Agriculture & Environment, 11(3&4), 2861-2865. https://doi.org/10.1234/4.2013.5146
  28. Williams, P. J., Ong, R. C., Brodie, J. F. & Luskin, M. S. (2021). Fungi and insects compensate for lost vertebrate seed predation in an experimentally defaunated tropical forest. nature communications, 12, 1650. https://doi.org/10.1038/s41467-021-21978-8.
  29. Yu, T., Mahe, L., Li, Y., Wei, X., Deng, X., & Zhang, D. (2022). Benefits of Crop Rotation on Climate Resilience and Its Prospects in China. Agronomy, 12(2), 436. http://dx.doi.org/10.3390/agronomy12020436.
  30. Zhang, J., Zheng, X., Jian, H. Qin, X., Yuan, F. & Zhang, R. (2013). Arthropod Biodiversity and Community Structures of Organic Rice Ecosystems in Guangdong Province, China. The Florida Entomologist, 96(1), 1 – 9. http://dx.doi.org/10.1653/024.096.0101.