The Study of Relationship of Soil Physics Health and Micro-Climate Characteristics on Paddy Fields

##plugins.themes.academic_pro.article.main##

Sumani Sumani
Alfia Nisa Widhiyastuti
Mujiyo Mujiyo
Ganjar Herdiansyah
Siti Maro’ah

Abstract

Global food security and environmental stability will be threatened by population growth, land usage, and land change. Proper soil management in plant production helps reduce temperature and humidity-induced plant deterioration. This study aims to identify soil physics health (SPH), microclimate characteristics, and the relationship between the two in managing organic and inorganic paddy fields. The research location is in Purwantoro District, Wonogiri Regency, using descriptive explorative research, with purposive soil sampling at work map, made by overlay thematic maps, resulting in 9 LMU. The observation and sampling were carried out in the maximum vegetative phase of plants, while the micro-climate is in the generation phase. The determination of the soil physics health status used the scoring method. Using the T-test, Pearson’s correlation test finds the relationship between SPH and micro-climate characteristics and the differences between the two. The results showed the distribution of SPH in organic farming is healthy (74.7) and very healthy (83.3), while inorganic farming is healthy (79.72). The temperature is optimal, ranging from 23.5°C to 30.1°C, but the humidity is minimum in the range of 35.3% to 76.1%. The SPH and micro-climate have a significant relationship, with a positive correlation between air and soil temperature with SPH and a negative correlation between air humidity and soil moisture.

##plugins.themes.academic_pro.article.details##

Author Biographies

Sumani Sumani, Universitas Sebelas Maret

Department of Soil Science

Alfia Nisa Widhiyastuti, Universitas Sebelas Maret

Department of Soil Science

Mujiyo Mujiyo, Universitas Sebelas Maret

Department of Soil Science

Ganjar Herdiansyah, Universitas Sebelas Maret

Department of Soil Science

Siti Maro’ah, Universitas Sebelas Maret

Department of Soil Science

How to Cite
Sumani, S., Widhiyastuti, A. N., Mujiyo, M., Herdiansyah, G., & Maro’ah, S. (2024). The Study of Relationship of Soil Physics Health and Micro-Climate Characteristics on Paddy Fields. Journal of Applied Agricultural Science and Technology, 8(1), 78-91. https://doi.org/10.55043/jaast.v8i1.194

References

  1. Abdollahi, L., Hansen, E. M., Rickson, R. J., & Munkholm, L. J. (2015). Overall Assessment Of Soil Quality On Humid Sandy Loams: Effects Of Location, Rotation And Tillage. Soil and Tillage Research, 145, 29–36. https://doi.org/10.1016/j.still.2014.08.009
  2. Adviany, I., & Maulana, D. D. (2019). Pengaruh Pupuk Organik dan Jarak Tanam terhadap C-Organik, Populasi Jamur Tanah dan Bobot Kering Akar serta Hasil Padi Sawah pada Inceptisols Jatinangor, Sumedang. Agrotechnology Research Journal, 3(1), 28–35. https://doi.org/10.20961/agrotechresj.v3i1.30382
  3. Al-Musyafa, M. N., Afandi, A., & Novpriansyah, H. (2016). Kajian Sifat Fisik Tanah Pada Lahan Pertanaman Nanas (Ananas Comosus L.) Produksi Tinggi dan Rendah Di Pt Great Giant Pineapple Lampung Tengah. Jurnal Agrotek Tropika, 4(1), 66–69. https://doi.org/10.23960/jat.v4i1.1903
  4. Amirinejad, A. A., Kamble, K., Aggarwal, P., Chakraborty, D., Pradhan, S., & Mittal, R. B. (2011). Assessment And Mapping Of Spatial Variation Of Soil physics health In A Farm. Geoderma, 160(3–4), 292–303. https://doi.org/10.1016/j.geoderma.2010.09.021
  5. Ariyanti, M., Soleh, M. A., & Maxiselly, Y. (2017). Respon Pertumbuhan Tanaman Aren (Arenga Pinnata Merr.) Dengan Pemberian Pupuk Organik Dan Pupuk Anorganik Berbeda Dosis. Kultivasi, 16(1), 271–278. Https://Doi.Org/10.24198/Kultivasi.V16i1.11543
  6. Ayu, I. W., Suhada, I., Kusumawardani, W., Oklima, A. M., Novantara, Y., & Soemarno, S. (2021). Assistance for Healthy Cultivation of Chili Plants on Sub-Optimal Land in Facing the Impact of Climate Change in Sumbawa Regency. Mattawang: Jurnal Pengabdian Masyarakat, 2(1), 1–7. https://doi.org/10.35877/454ri.mattawang181
  7. Chittapun, S., Limbipichai, S., Amnuaysin, N., Boonkerd, R., & Charoensook, M. (2018). Effects Of Using Cyanobacteria And Fertilizer On Growth And Yield Of Rice, Pathum Thani I: A Pot Experiment. Journal of Applied Phycology, 30(1), 79–85. https://doi.org/10.1007/s10811-017-1138-y
  8. Clune, M. G. I., Schindelbeck, & Ristow. (2016). Cornell Framework: Comprehensive Assessment of Soil Health (3rd ed). Ithaca, New York: Cornell University.
  9. Dass, A., Chandra, S., Uphoff, N., Choudhary, A. K., Bhattacharyya, R., & Rana, K. S. (2017). Agronomic Fortification Of Rice grains With Secondary And Micronutrients Under Differing Crop Management And Soil Moisture Regimes In The North Indian Plains. Paddy and Water Environment, 15, 745–760. https://doi.org/10.1007/s10333-017-0588-9
  10. Estiningtyas, W., & Syakir, M. (2017). Pengaruh Perubahan Iklim Terhadap Produksi Padi Di Lahan Tadah Hujan. Jurnal Meteorologi dan Geofisika, 18(2), 83–93. Https://Doi.Org/10.31172/jmg.v18i2.406.
  11. Fadillah, N., Utomo, M., Afrianti, N. A., & Sarno. (2022). Perubahan Sifat Kimia Tanah pada Profil Tanah Akibat Penerapan Sistem Olah Tanah dan Pemupukan N Jangka Panjang pada Lahan Pertanaman Jagung ( Zea Mays L .) di Kebun Percobaan Politeknik Negeri Lampung. Agrotek Tropika, 10(4), 627–632. https://doi.org/10.23960/jat.v10i4.6465.
  12. Han-wen, L., Xiao-ke, Z., Gui-zong, Z., Xin-chang, K., & Wen-ju, L. (2022). Partial Organic Substitution Weakens The Negative Effect Of Chemical Fertilizer On Soil Micro-Food Webs. Journal of Integrative Agriculture, 21(10), 3037–3050. https://doi.org/10.1016/j.jia.2022.07.043.
  13. Hartati, S., Sumani, S., & Hendrata, H. E. A. (2014). Pengaruh Imbangan Pupuk Organik Dan Anorganik Terhadap Serapan P Dan Hasil Tanaman Padi Sawah Pada Dua Sistem Budidaya Di Lahan Sawah Sukoharjo. Caraka Tani: Journal of Sustainable Agriculture, 29(1), 53. https://doi.org/10.20961/carakatani.v29i1.13318.
  14. Hendra, I. P., Sumiyati, & Tika, I. W. (2014). Analisis Iklim Mikro pada Budidaya Padi dengan Sistem Tanam Legowo Nyisip. Jurnal BETA (Biosistem dan Teknik Pertanian), 2(1), 1–9. Http://dx.doi.org/10.24843/JBETA.2020.v08.i01.p03.
  15. Indoria, A. K., Sharma, K. L., Reddy, K. S, & Rao, C. R. (2017). Role Of Soil Physical Properties In Soil Health Management And Crop Productivity In Rainfed Systems-I: Soil Physical Constraints And Scope. Current Science, 112(12), 2405–2414. https://doi.org/10.18520/cs/v112/i12/2405-2414.
  16. Janu, Y. F, & Mutiara, C. (2021). Pengaruh Biochar Sekam Padi Terhadap Sifat Fisik Tanah Dan Hasil Tanaman Jagung (Zea Mays) Di Kelurahan Lape Kecamatan Aesesa. Journal of Sustainable Drayland Agriculture, 14(1), 67–82. https://doi.org/10.37478/agr.v14il.
  17. Jia, Q., Lv, B., Guo, M., Luo, C., Zheng, L., Hsiang, T., & Huang, J. (2015). Effect Of Rice Growth Stage, Temperature, Relative Humidity And Wetness Duration On Infection Of Rice Panicles By Villosiclava Virens. European Journal of Plant Pathology, 141(1), 15–25. https://doi.org/10.1007/s10658-014-0516-4.
  18. Juan, B. C., Chen, Z. Lou, Wang, J., & Zhou, D. (2013). Quantitative Assessment of Soil Health Under Different Planting Patterns and Soil Types. Pedosphere, 23(2), 194–204. https://doi.org/10.1016/S1002-0160(13)60007-7.
  19. Julia, C., & Dingkuhn, M. (2013). Predicting Temperature Induced Sterility Of Rice Spikelets Requires Simulation Of Crop-Generated Microclimate. European Journal of Agronomy, 49, 50–60. https://doi.org/10.1016/j.eja.2013.03.006.
  20. Khamid, M. B. R., Junaedi, A., Lubis, I., & Yamamoto, Y. (2019). Respon Pertumbuhan dan Hasil Padi (Oryza sativa L.) terhadap Cekaman Suhu Tinggi. Agron Indonesia, 47(2), 119–125. https://doi.org/10.24831/jai.v47i2.23854.
  21. Khatoon, Z., Huang, S., Rafique, M., Fakhar, A., Kamran, M. A., & Santoyo, G. (2020). Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. Journal of Environmental Management, 273(November), 118. https://doi.org/10.1016/j.jenvman.2020.111118.
  22. Kurniawan, I. D., Kinasih, I., Akbar, R. T. M., Chaidir, L., Iqbal, S., Pamungkas, B., & Imanudin, Z. (2023). Arthropod Community Structure Indicating Soil Quality Recovery in the Organic Agroecosystem of Mount Ciremai National Park’s Buffer Zone. Caraka Tani: Journal of Sustainable Agriculture, 38(2), 229–243. http://dx.doi.org/10.20961/carakatani.v38i2.69384.
  23. Laza, M. R. C., Sakai, H., Cheng, W., Tokida, T., Peng, S., & Hasegawa, T. (2015). Differential Response Of Rice Plants To High Night Temperatures Imposed At Varying Developmental Phases. Agricultural and Forest Meteorology, 209–210, 69–77. https://doi.org/10.1016/j.agrformet.2015.04.029.
  24. Lelang, M. A., Nahak, Y. S., & Kia, K. W. (2022). Pengolahan Pupuk Organik Berbahan Limbah Ternak Ayam Di Kampung Baru-Kelurahan Maubeli. Jurnal Pengabdian Masyarakat, 3(1), 7–15. https://doi.org/10.31004/cdj.v3i1.3353.
  25. Lian, J., Wang, H., Deng, Y., Xu, M., Liu, S., Zhou, B., Jangid, K., & Duan, Y. (2022). Impact of long-term application of manure and inorganic fertilizers on common soil bacteria in different soil types. Agriculture, Ecosystems and Environment, 337(October), 108044. https://doi.org/10.1016/j.agee.2022.108044.
  26. Listyowati, C., Indradewa, D., Nurul, S., & Irwan, R. (2022). Study on Weeds Abundance on Rice Fields in Mycorrhizal Inoculation and Different Planting Methods. Caraka Tani : Journal of Sustainable Agriculture, 37(2), 259–274. http://dx.doi.org/10.20961/carakatani.v37i2.53131
  27. Liu, Y., Yang, S., Lu, H., & Wang, Y. (2018). Effects Of Biochar On Spatial And Temporal Changes In Soil Temperature In Cold Waterlogged Rice Paddies. Soil & Tillage Research, 181, 102–109. https://doi.org/10.1016/j.still.2018.04.008
  28. Mankotia, R., Sharma, R., Sepehya, S., Saini, R., & Kumar, A. (2019). Soil Health Assessment and Its Sustenance. International Journal of Current Microbiology and Applied Sciences, 8(8), 1978–1987. https://doi.org/10.20546/ijcmas.2019.808.231.
  29. Marrou, H., Guilioni, L., Dufour, L., Dupraz, C., & Wery, J. (2013). Microclimate Under Agrivoltaic Systems: Is Crop Growth Rate Affected In The Partial Shade Of Solar Panels? Agricultural and Forest Meteorology, 177, 117–132. https://doi.org/10.1016/j.agrformet.2013.04.012.
  30. Moe, K., Htwe, A. Z., Thu, T. T. P., Kajihara, Y., & Yamakawa, T. (2019). Effects on NPK status, growth, dry matter and yield of rice (Oryza sativa) by organic fertilizers applied in field condition. Agriculture (Switzerland), 9(5), 1–15. https://doi.org/10.3390/agriculture9050109.
  31. Molotoks, A., Smith, P., & Dawson, T. P. (2021). Impacts of land use, population, and climate change on global food security. Food and Energy Security, 10(1), 1–20. https://doi.org/10.1002/fes3.261.
  32. Naftchali, D. A., Mirlatifi, S. M., Shahnazari, A., Ejlali, F., & Mahdian, M. H. (2013). Effect Of Subsurface Drainage On Water Balance And Water Table In Poorly Drained Paddy Fields. Agricultural Water Management, 130, 61–68. https://doi.org/10.1016/j.agwat.2013.08.017.
  33. Ning, C., Gao, P., Wang, B., Lin, W., Jiang, N., & Cai, K. (2017). Impacts Of Chemical Fertilizer Reduction And Organic Amendments Supplementation On Soil Nutrient, Enzyme Activity And Heavy Metal Content. Journal of Integrative Agriculture, 16(8), 1819–1831. https://doi.org/10.1016/S2095-3119(16)61476-4.
  34. Nugroho, A. K., Permadi, I., Nofiyati, & Ulfa, S. H. N. (2019). Sistem Pendukung Keputusan Penilaian Kesehatan Tanah Dengan Metode Simple Additive Weighting. Jurnal Informatika: Jurnal Pengembangan IT (JPIT), 4(1), 61–69. https://doi.org/10.30591/jpit.v4i1.1034.
  35. Poll, C., Marhan, S., Back, F., Niklaus, P. A., & Kandeler, E. (2013). Field-Scale Manipulation Of Soil Temperature And Precipitation Change Soil CO2 Flux In A Temperate Agricultural Ecosystem. Agriculture, Ecosystems and Environment, 165, 88–97. https://doi.org/10.1016/j.agee.2012.12.012.
  36. Rizqi, M., Yasar, M., & Jayanti, D. S. (2019). Analisis Kebutuhan Air Irigasi Menggunakan CROPWAT 8.0 pada Daerah Irigasi Krueng Jreu Kabupaten Aceh Besar. Jurnal Ilmiah Mahasiswa Pertanian, 4(4), 412–421. http://dx.doi.org/10.17969/jimfp.v4i4.12758.
  37. Romadhon, M. R., Mujiyo, M., Cahyono, O., Dewi, W. S., Hardian, T., Anggita, A., Hasanah, K., Irmawati, V., & Istiqomah, N. M. (2024). Assessing the Effect of Rice Management System on Soil and Rice Quality Index in Girimarto, Wonogiri, Indonesia. Journal of Ecological Engineering, 25(2), 126–139. https://doi.org/10.12911/22998993/176772
  38. Santoso, G., Hani, S., & Prasetiyo, R. (2020). Sistem Monitoring Kualitas Tanah Tanaman Padi dengan Parameter Suhu dan Kelembaban Tanah Berbasis Internet of Things ( IoT ). Teknoka, 5(5), 146–155. https://doi.org/10.22236/teknoka.v5i.297.
  39. Seguel, O., Baginsky, C., Contreras, A., Covarrubias, J. I., González, C., & Poblete, L. (2013). Physical Properties Of A Fine Textured Haplocambid After Three Years Of Organic Matter Amendments Management. Journal of Soil Science and Plant Nutrition, 13(3), 690–705. https://doi.org/10.4067/S0718-95162013005000055.
  40. Shah, A. N., Tanveer, M., Shahzad, B., Yang, G., Fahad, S., Ali, S., Bukhari, M. A., Tung, S. A., Hafeez, A., & Souliyanonh, B. (2017). Soil Compaction Effects on Soil Health and Crop Productivity : An Overview. Environmental Science and Pollution Research, 24, 10056–10067. https://doi.org/10.1007/s11356-017-8421-y.
  41. Shen, Y., McLaughlin, N., Zhang, X., Xu, M., & Liang, A. (2018). Effect Of Tillage And Crop Residue On Soil Temperature Following Planting For A Black Soil In Northeast China. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-22822-8
  42. Sholihah, A., Sugianto, A., & Alawiy, T. (2018). Variasi Campuran Brangkasan Kedelai Dan Jerami Padi Terhadap Serapan N Dan Efesiensi Penggunaan N, Pertumbuhan dan Hasil Tanaman Padi Gogo (Oryza sativa L.). Jurnal Folium, 2(1), 10–19. https://doi.org/10.33474/folium.v2i1.999.
  43. Siswanti, D. U., Syahidah, A., & Sudjino. (2018). Produktivitas Tanaman padi ( Oryza sativa L .) cv Segreng Setelah Aplikasi Sludge Biogas di Lahan Sawah Desa Wukirsari, Cangkringan, Sleman. Ilmiah Biologi, 6(1), 64–70. Https://Doi.Org/10.24252/bio.v6i1.4241.
  44. Stevens, A. W. (2018). Review: The economics of soil health. Food Policy, 80(October), 1–9. https://doi.org/10.1016/j.foodpol.2018.08.005.
  45. Supriyadi, S., Vera, I. L. P., & Purwanto, P. (2021). Soil Quality at Rice Fields with Organic, Semi-organic and Inorganic Management in Wonogiri District, Indonesia. Caraka Tani: Journal of Sustainable Agriculture, 36(2), 259. https://doi.org/10.20961/carakatani.v36i2.42556.
  46. Syaranamual, S., Sipyan, D., & Tuhumena, V. L. (2022). The Seedlings Growth Performance of Areca Nut Palm ( Areca catechu L .) under Different Types of Organic Mulching. Caraka Tani : Journal of Sustainable Agriculture, 37(2), 233–242. http://dx.doi.org/10.20961/carakatani.v37i2.54636.
  47. Wihardjaka, A., & Harsanti, E. S. (2021). Dukungan Pupuk Organik untuk Memperbaiki Kualitas Tanah pada Pengelolaan Padi Sawah Ramah Lingkungan. Jurnal Pangan, 30(1), 53–64. https://doi.org/10.33964/jp.v30i1.496.