The Effect of Temperature on Thermochromic Leuco Dyes: A Meta-Analysis
##plugins.themes.academic_pro.article.main##
Abstract
The effect of temperature treatment, either increasing or decreasing the temperature of leuco dyes, can produce thermochromic by looking at the changing color of samples resulting from experiments. The colors that are seen namely brightness (L), a* value, b* value, chroma, degree of hue (oHue), color difference ( E), and color density (CD). This research was conducted to analyze the temperature treatment of the thermochromic leuco dye against color characteristics resulting from meta-analysis using secondary data from pre-existing research. The total number of journals used was 21 studies and the data obtained were 82 sets of treatments. The data were then analyzed using IBM SPSS software, which used quadratic and linear regression models. The results of the study with a temperature range between -8°C to 95°C show that the effect of temperature treatment with an increase in temperature can cause a significant elevation impact on brightness values (p <0.002, R2 0.174), b* (P <0.01, R2 0.146), color difference ( E) (P <0.0012, R2 0.117), and ohue (P <0.053, R2 0.087). A significant reduction effect can be seen in the chroma value (P <0.007 R2 0.134) and the color density (P <0.007, R2 0.128). The impact of temperature treatment was not significant (p> 0.1) for a* value.
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Abdellaoui, H., Raji, M., Chakchak, V., Qaiss, A. el K. & Bouhfid, R. (2020). Thermochromic composite materials: synthesis, properties and applications. Cambridge, United Kingdom, Elsevier Ltd.
- Baron M. G. & Elie, M. (2003). Temperature Sensing Using Reversible Thermochromic Polymeric Films. Sensors Actuators, B Chem., 90 (1–3), 271–275. https://doi.org/10.1016/S0925-4005(03)00045-5.
- Bašnec, K., Hajzeri, M. & Gunde, M. K. (2016). Thermal and Colour Properties of Leuco Dye-Based Thermochromic Composite with Dodecanol Solvent. J. Therm. Anal. Calorim., 127, 55-61. https://doi.org/10.1007/s10973-016-5670-9.
- Bourque, A. N. (2014). Investigations of Reversible Thermochromism in Three-Component Systems [Thesis]. Halifax (CA): Universitas Dalhousie. https://dalspace.library.dal.ca/handle/10222/49088
- Bourque, A. N., & White, M. A. (2015). Control of Thermochromic Behavior in Crystal Violet Lactone (CVL)/Alkyl Gallate/Alcohol Ternary Mixtures. Can. J. Chem., 93(1), 22–31, https://doi.org/10.1139/cjc-2014- 0251.
- Burkinshaw, S. M., Griffiths, J. &Towns, A. D. (1998). Reversibly Thermochromic Systems Based on pH-Sensitive Spirolactone-Derived Functional Dyes. J. Mater. Chem., 8(12), 2677–2683. https://doi.org/10.1039/a805994b.
- Chen, H., Zhang, M., Bhandari, B. & Yang, C. (2019). Development of A Novel Colorimetric Food Package Label For Monitoring Lean Pork Freshness. LWT, 99, 43–49, https://doi.org/10.1016/j.lwt.2018.09.048.
- Chowdhury, M. A., Butola, B. S. & Joshi, M. (2013). Application of Thermochromic Colorants on Textiles: Temperature Dependence of Colorimetric Properties. Coloration Technology, 129(3), 232–237. https://onlinelibrary.wiley.com/doi/10.1111/cote.12015
- Durasevic, V. (2016). Smart Dyes for Medical Textiles. Amsterdam, Netherlands. Elsevier Ltd., https://doi.org/10.1016/B978-1-78242-379-9.00002-5.
- Fitria, E. A., Warsiki, E. & Yuliasih, I. (2017). Model Kinetika Perubahan Warna Label Indikator Dari Klorofil Daun Singkong (Manihot Esculenta Crantz). J. Teknologi Industri Pertanian, 27(1), 17–23. https://doi.org/10.24961/j.tek.ind.pert.2017.27.1.17.
- Francis, F. J. (1995). Quality as Influenced by Color. Food Quality and Preference, 6(3), 149-155. https://doi.org/10.1016/0950-3293(94)00026-R
- Fu, F., & Hu, L. (2017). Temperature Sensitive Colour-Changed Composites. Adv. High Strength Nat. Fibre Compos. Constr., 2017, 405–423, https://doi.org/10.1016/B978-0-08-100411-1.00015-7.
- Geng, X., Li, W., Yin, Q., Wang, Y., Han, N., Wang, N., Bian, J., Wang, J. & Zhang, X. (2018). Design and Fabrication of Reversible Thermochromic Microencapsulated Phase Change Materials for Thermal Energy Storage and Its Antibacterial Activity. Energy, 159, 857–869, https://doi.org/10.1016/j.energy.2018.06.218.
- Irawan, A. Sofyan, A., Ridwan, R., Hassim, H.A., Respati, A. N., Wardani, W. W, Sadarman, Astuti, W. D., & Jayanegara, A. (2021). Effects of Different Lactic Acid Bacteria Groups and Fibrolytic Enzymes as Additives on Silage Quality: A Meta-Analysis. Bioresour. Technol. Reports, 14, 100654. https://doi.org/10.1016/j.biteb.2021.100654.
- Jakovljević, M., Kulčar, R., Tomašegović, D. & Gunde, M. K. (2017). Colorimetric Description of Thermochromic Printing Inks. Acta Graph. - Znan. Časopis za Tisk. i Graf. Komun., 28(1), 7– 14, https://doi.org/10.25027/agj2017.28.v28i1.119.
- Jayanegara, A. & Palupi, E. (2010). Condensed Tannin Effects on Nitrogen Digestion in Ruminants: A Meta-Analysis From in Vitro and in Vivo Studies. Media Peternak, 33(3), 176–181, https://doi.org/10.5398/medpet.2010.33.3.176.
- Jin, Y., Bai, Y., Zhu, Y., Li, X. & Ge, M. (2017). Thermosensitive Luminous Fiber Based on Reversible Thermochromic Crystal Violet Lactone Pigment. Dyes and Pigments, 146, 567–575. https://doi.org/10.1016/j.dyepig.2017.07.062.
- Kulčar, R., Friškovec, M., Knešaurek, N., Sušin, B. & Gunde, M. K. (2009). Colour Changes of UV-Curable Thermochromic Inks, Proc. 36th Int. Res. Conf. iari-gai in Advance Printing and Media Technology, p.429–434. https://www.researchgate.net/publication/284312541_Colour_changes_of_UV-curable_thermochromic_inks
- Kulčar, R., Friškovec, M., Hauptman, N., Vesel, A. & Gunde, M. K. (2010). Colorimetric Properties of Reversible Thermochromic Printing Inks. Dyes and Pigments, 86(3), 271–277, https://doi.org/10.1016/j.dyepig.2010.01.014.
- Kulcar, R., Gunde, M. K. & Knesaurek, N. (2012). Dynamic Colour Possibilities and Functional Properties of Thermochromic Printing Inks. Acta Graph., 23, 25–36. https://www.actagraphica.hr/index.php/actagraphica/article/view/80/74
- Malherbe, I., Sanderson, R. D. & Smit, E. (2010). Reversibly Thermochromic Micro-fibres by Coaxial Electrospinning. Polymer, 51(22), 5037–5043. https://doi.org/10.1016/j.polymer.2010.09.018.
- Nofrida, R., Warsiki, E. & Yuliasih, I. (2013). Pengaruh Suhu Penyimpanan Terhadap Perubahan Warna Label Cerdas Indikator Warna dari Daun Erpa (Aerva sanguinolenta), Jurnal Teknologi Industri Pertanian, 23(3): 232-241. https://journal.ipb.ac.id/index.php/jurnaltin/article/view/7914.
- Panák, O., Držková, M. & Kaplanová, M. (2015). Insight into The Evaluation of Colour Changes of Leuco Dye Based Thermochromic Systems as A Function of Temperature. Dyes and Pigments, 120, 279–287. https://doi.org/10.1016/j.dyepig.2015.04.022.
- Panák, O., Držková, M., Kaplanová, M., Novak, U. & Gunde, M. K. (2017). The Relation Between Colour and Structural Changes in Thermochromic Systems Comprising Crystal Violet Lactone, Bisphenol A, and Tetradecanol. Dyes and Pigments, 136, 382–389. https://doi.org/10.1016/j.dyepig.2016.08.050.
- Prihambodo T. R., Sholikin, M. M., Qomariyah, N, Jayanegara, A., Batubara, I., Utomo, D. B. & Nahrowi, N. (2021). Influence of Different Forms of Flavonoid on Growth Performance and Gut Morphology of Broiler: A Meta-Analysis. IOP Conference Series: Materials Science and Engineering, 1098, 6062024. https://doi.org/10.1088/1757-899x/1098/6/062024.
- Putri, P. G., Warsiki, E., & Sugiarto. (2019a). The Stability of Extract Indigofera tinctoria for Color Indicator. IOP Conference Series: Earth and Environmental Science, 347(1). https://doi.org/10.1088/1755-1315/347/1/012070.
- Putri, V. J., Warsiki, E., Syamsu, K., & Iskandar, A. (2019b). Application Nano Zeolite-Molybdate for Avocado Ripeness Indicator. IOP Conference Series: Earth and Environmental Science, 347(1), 0-7, https://doi.org/10.1088/1755-1315/347/1/012063.
- Raditoiu, A., Raditoiu, V., Nicolae, C. A., Raduly, M. F., Amariutei, V. & Wagner, L. E. (2016). Optical and Structural Dynamical Behavior of Crystal Violet Lactone – Phenolphthalein Binary Thermochromic Systems. Dyes and Pigments, 134, 69–76. https://doi.org/10.1016/j.dyepig.2016.06.046.
- Rosalina, Y., Warsiki, E., & Fauzi, A. M. (2022). The potential of anthocyanin from red banana peel as natural dye in smart packaging development. IOP Conference Series: Earth and Environmental Science, 1063(1), 12019. https://doi.org/10.1088/1755-1315/1063/1/012019.
- Rostini, I., Junianto, J. & Warsiki, E. (2023). Development of bio-based color sensor from myofibrillar pro- tein – based edible film incorporated with sappan wood (caes- alpinia sappan l.) extract for smart food packaging Appl. Sci., 13(14), 8205 https://doi.org/10.20944/preprints202305.1275.v1.
- Seeboth, A, Klukowska, A., Ruhmann, R. & Lötzsch, D. (2007). Thermochromic Polymer Materials. Chinese J. Polym. Sci., 25(2), 123–135. https://www.worldscientific.com/doi/abs/10.1142/S0256767907001923.
- Sjofjan, O., Adli, D. N., Harahap, R. P., Jayanegara, A., Utama, D. T. & Seruni, A. P. (2021). The Effects of Lactic Acid Bacteria and Yeasts on Probiotics on The Growth Performance, Relative Organ Weight, Blood Parameters, and Immune Responses of Broiler: A Meta-Analysis. F1000Research, 10(183). https://doi.org/10.12688/f1000research.51219.1.
- Sudhakar, P., Gobi, N. & Senthilkumar, M. (2008). Camouflage Fabrics for Military Protective Clothing, Military Textiles, 2008, 293–318, https://doi.org/10.1533/9781845694517.2.293.
- Suryantari, R., & Flaviana, F. (2017). Aplikasi Thermochromic Liquid Crystal Untuk Mengamati Perpindahan Kalor Pada Permukaan Logam. Indonesian Journal of Apllied Physics, 7(1), 20–27, https://jurnal.uns.ac.id/ijap/article/view/2292.
- Tozum, M. S., Aksoy, S. A., & Alkan, C. (2018). Microencapsulation of Three-Component Thermochromic System for Reversible Color Change and Thermal Energy Storage. J. Fibers and Polymers, 19(3), 660-669. https://doi.org/10.1007/s12221-018-7801-3
- Warsiki, E., Rini, N. & Indah, Y. (2013). Pemanfaatan Ekstrak Daun Erpa (Aerva sanguinolenta) untuk Label Cerdas Indikator Warna. Jurnal Pertanian Indonesia, 18(1), 16-19. https://journal.ipb.ac.id/index.php/JIPI/article/view/8349/6517
- Warsiki, E., Nofrida, R. & Yuliasih, I. (2018) Color Indicator Labels to Detect the Damage of Temperature and Light Product Sensitive and Its Method to Produce. Patent No. IDP000049552. https://pdki-indonesia.dgip.go.id/detail/3aa10beb6d950b5caddc87f81869953687482fc1b46cdeeed624fabec2eceb49?nomor=P00201304636&type=patent&keyword=IDP000049552.
- Warsiki, E., Aprilliani, F. & Iskandar, A. (2019). The Effects of the Use of Corrugated Cardboards Covered with Ethylene Absorbers on Mango Fruit Quality after Short-Term Storage (Mangifera Indica L.). J. Hortic. Res., 27(2), 65–70, https://doi.org/10.2478/johr-2019-0007.
- Warsiki, E., & Rofifah, N. (2018). Dragon Fruit Freshness Detector Based on Methyl Red Colour Indicator. IOP Conference Series: Earth and Environmental Science, 209(1). https://doi.org/10.1088/1755-1315/209/1/012016.
- Zhang, W., Ji, X., Zeng, C., Chen, K., Yin, Y. & Wang, C. (2017). A New Approach for The Preparation of Durable and Reversible Color Changing Polyester Fabrics Using Thermochromic Leuco Dye-loaded Silica Nanocapsules. J. of Materials Chemistry C, 5(32), 8169-8178. https://pubs.rsc.org/en/content/articlelanding/2017/tc/c7tc02077e. https://doi.org/10.1039/C7TC02077E.
- Zhang, W., Ji, X., Zeng, C., Yin, Y., & Wang, C. (2019). A Sultone-Based Reversible Dark Red-Yellow Conversion Thermochromic Colorant with Adjustable Switching Temperature. Coloration Technology, 135(2), 97–102, https://doi.org/10.1111/cote.12380.