Phytochemical Screening of Mahogany (Swietenia mahogany) Secondary Extract Potential as COVID-19 Medication

##plugins.themes.academic_pro.article.main##

Ifan Aulia Candra
Syahbudin Hasibuan
Fastabiqul Khoir

Abstract

Mahogany secondary metabolite is proven effective as lung disease medication, including COVID-19 through docking analysis. Therefore, this study aimed to identify total secondary metabolite from leaves, stem barks, and seeds of mahogany (Swietenia mahogany). The study was carried out using an experimental and descriptive method by observing the visual changes in the sample including color and foam formation, total levels of flavonoids, alkaloids, and saponins using Gas Chromatography and Mass Spectroscopy (GC-MS). Phytochemical analysis was analyzed to identify secondary metabolites namely flavonoids, alkaloids, tannins, triterpenoid saponins, and steroids. The results of the GC-MS analysis showed that mahogany seeds extract had the highest retention time, with a total of 46,484, containing alpha -D Glucopyranoside, 3-Penten-2-one, and gamma-Tocopherol. These compounds belonged to derivatives of flavonoids and saponins, serving as potential COVID-19 medication. The other were terpenoid, steroid, and fatty acid group compounds (alpha humulene, neophyte diene, n-hexadecanoic acid, 9- Octadecenoic acid, Octadecanoic acid, Squalene, and Stigmasterol). In conclusion, these identified compounds have the potential for COVID-19 medication due to their anti-inflammatory, antiviral, antimicrobial immunosuppressant, anticancer, and anti-asthma properties.

##plugins.themes.academic_pro.article.details##

Author Biographies

Ifan Aulia Candra, Medan Area University

Department of Agrotechnology, Agriculture Faculty

Syahbudin Hasibuan, Medan Area University

Department of Agrotechnology, Agriculture Faculty

Fastabiqul Khoir, Medan Area University

Department of Agrotechnology, Agriculture Faculty

How to Cite
Candra, I. A., Hasibuan, S., & Khoir, F. (2024). Phytochemical Screening of Mahogany (Swietenia mahogany) Secondary Extract Potential as COVID-19 Medication. Journal of Applied Agricultural Science and Technology, 8(3), 303-314. https://doi.org/10.55043/jaast.v8i3.247

References

  1. Hui DS, I Azhar E, Madani TA, Ntoumi F, Kock R, Dar O, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health — The latest 2019 novel coronavirus outbreak in Wuhan, China. International Journal of Infectious Diseases 2020;91:264–6. https://doi.org/10.1016/j.ijid.2020.01.009.
  2. House NNC, Palissery S, Sebastian H. Corona Viruses: A Review on SARS, MERS and COVID-19. Microbiol Insights 2021;14:117863612110024. https://doi.org/10.1177/11786361211002481.
  3. Di Gennaro F, Pizzol D, Marotta C, Antunes M, Racalbuto V, Veronese N, et al. Coronavirus Diseases (COVID-19) Current Status and Future Perspectives: A Narrative Review. Int J Environ Res Public Health 2020;17:2690. https://doi.org/10.3390/ijerph17082690.
  4. Hoenigl M, Seidel D, Sprute R, Cunha C, Oliverio M, Goldman GH, et al. COVID-19-associated fungal infections. Nat Microbiol 2022;7:1127–40. https://doi.org/10.1038/s41564-022-01172-2.
  5. Bhosale YH, Sridhar Patnaik K. IoT Deployable Lightweight Deep Learning Application For COVID-19 Detection With Lung Diseases Using RaspberryPi. 2022 International Conference on IoT and Blockchain Technology (ICIBT), IEEE; 2022, p. 1–6. https://doi.org/10.1109/ICIBT52874.2022.9807725.
  6. Sinha S, Castillo V, Espinoza CR, Tindle C, Fonseca AG, Dan JM, et al. COVID-19 lung disease shares driver AT2 cytopathic features with Idiopathic pulmonary fibrosis. EBioMedicine 2022;82:104185. https://doi.org/10.1016/j.ebiom.2022.104185.
  7. Notarte KI, Catahay JA, Velasco JV, Pastrana A, Ver AT, Pangilinan FC, et al. Impact of COVID-19 vaccination on the risk of developing long-COVID and on existing long-COVID symptoms: A systematic review. EClinicalMedicine 2022;53:101624. https://doi.org/10.1016/j.eclinm.2022.101624.
  8. Alam MdM, Fawzi AM, Islam MdM, Said J. Impacts of COVID-19 pandemic on national security issues: Indonesia as a case study. Security Journal 2022;35:1067–86. https://doi.org/10.1057/s41284-021-00314-1.
  9. Zheng C, Shao W, Chen X, Zhang B, Wang G, Zhang W. Real-world effectiveness of COVID-19 vaccines: a literature review and meta-analysis. International Journal of Infectious Diseases 2022;114:252–60. https://doi.org/10.1016/j.ijid.2021.11.009.
  10. Hasibuan S, Nasution A, Candra IA. Spike Protein Covid-19 –Mahagoni’s (Swietenia Mahogany) Secondary Metabolite Interaction Using In-Silico Analysis. International Journal of Chemical and Biochemical Sciences 2022;21:106–11.
  11. Bilginer S, Gözcü S, Güvenalp Z. Molecular Docking Study of Several Seconder Metabolites from Medicinal Plants as Potential Inhibitors of COVID-19 Main Protease. Turk J Pharm Sci 2022;19:431–41. https://doi.org/10.4274/tjps.galenos.2021.83548.
  12. Malekmohammad K, Rafieian-Kopaei M. Mechanistic Aspects of Medicinal Plants and Secondary Metabolites against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Curr Pharm Des 2021;27:3996–4007. https://doi.org/10.2174/1381612827666210705160130.
  13. Turangan ATM, Wewengkang DS, Yudistira A. Uji Aktivitas Antioksidan Ekstrak Etanol Kulit Batang Mahoni (Swietenia mahagoni Jacq.) Menggunakan Metode Dpph (1,1 diphenyl-2-picrylhydrazyl). Pharmacon 2019;8:548. https://doi.org/10.35799/pha.8.2019.29329.
  14. Sangi M, Runtuwene MRJ, Simbala HEI, Makang VMA. Analisis fitokimia tumbuhan obat di Kabupaten Minahasa Utara. Chemistry Progress 2008;1:47–53.
  15. Zhang Q-W, Lin L-G, Ye W-C. Techniques for extraction and isolation of natural products: a comprehensive review. Chin Med 2018;13:20. https://doi.org/10.1186/s13020-018-0177-x.
  16. Nortjie E, Basitere M, Moyo D, Nyamukamba P. Extraction Methods, Quantitative and Qualitative Phytochemical Screening of Medicinal Plants for Antimicrobial Textiles: A Review. Plants 2022;11:2011. https://doi.org/10.3390/plants11152011.
  17. Akin S, Aydin Z, Yilmaz G, Aliustaoglu M, Keskin O. Evaluation of the relationship between glycaemic regulation parameters and neutrophil-to-lymphocyte ratio in type 2 diabetic patients. EMJ Diabetes 2019;7:91–6.
  18. Benaroudj N, Lee DH, Goldberg AL. Trehalose Accumulation during Cellular Stress Protects Cells and Cellular Proteins from Damage by Oxygen Radicals. Journal of Biological Chemistry 2001;276:24261–7. https://doi.org/10.1074/jbc.M101487200.
  19. Bera TK, Chatterjee K, Ghosh D. In-vitro antioxidant properties of the hydro-methanol extract of the seeds of Swietenia mahagoni (L.) Jacq. Biomarkers and Genomic Medicine 2015;7:18–24. https://doi.org/10.1016/j.bgm.2014.05.003.
  20. Yarazari SB, Jayaraj M. GC–MS Analysis of Bioactive Compounds of Flower Extracts of Calycopteris floribunda Lam.: A Multi Potent Medicinal Plant. Appl Biochem Biotechnol 2022;194:5083–99. https://doi.org/10.1007/s12010-022-03993-7.
  21. Krishnamoorthy K, Subramaniam P. Phytochemical Profiling of Leaf, Stem, and Tuber Parts of Solena amplexicaulis (Lam.) Gandhi Using GC-MS. Int Sch Res Notices 2014;2014:1–13. https://doi.org/10.1155/2014/567409.
  22. Ebrahimi M, Farhadian N, Amiri AR, Hataminia F, Soflaei SS, Karimi M. Evaluating the efficacy of extracted squalene from seed oil in the form of microemulsion for the treatment of COVID‐19: A clinical study. J Med Virol 2022;94:119–30. https://doi.org/10.1002/jmv.27273.
  23. Taiz L, Zeiger E. Plant Physiology. Massachusetts: Inc. Publishers; 2006.
  24. Zhang X-C, Zhu L, Li X-Y, Liu L-C, Lai P-X. Chemical Composition, and Evaluation of Antibacterial,Antibiofilm and Synergistic Effects with Conventional Antibiotics of Essential Oil from Mallotus repandus. Records of Natural Products 2021;15:324–9. https://doi.org/10.25135/rnp.217.20.10.1854.
  25. Custodio L, Garcia-Caparros P, Pereira CG, Castelo-Branco P. Halophyte Plants as Potential Sources of Anticancer Agents: A Comprehensive Review. Pharmaceutics 2022;14:2406. https://doi.org/10.3390/pharmaceutics14112406.
  26. Sushmitha HS, Roy CL, Gogoi D, Velagala RD, Amresh N, Sathyamurthy B, et al. Phytochemical and Pharmacological Studies on Hylocereus undatus Seeds: An In Vitro Approach. World J Pharm Res 2014;7:986–1006.
  27. Guimarães PG, Moreira IS, Campos Filho PC, Ferraz JL de AA, Novaes QS de, Batista R. Antibacterial activity of Schinopsis brasiliensis against phytopathogens of agricultural interest. Revista Fitos 2015;9. https://doi.org/10.5935/2446-4775.20150013.
  28. Vazhappilly CG, Hodeify R, Siddiqui SS, Laham AJ, Menon V, El‐Awady R, et al. Natural compound catechol induces DNA damage, apoptosis, and G1 cell cycle arrest in breast cancer cells. Phytotherapy Research 2021;35:2185–99. https://doi.org/10.1002/ptr.6970.
  29. Rijayanti RP. Uji aktivitas antibakteri ekstrak etanol daun mangga bacang (Mangifera Foetida L.) terhadap Staphylococcus aureus secara in vitro. Jurnal Mahasiswa PSPD FK Universitas Tanjungpura 2014;1.
  30. Febrinda AE, Astawan M, Wresdiyati T, Yuliana ND. Kapasitas Antioksidan Dan Inhibitor Alfa Glukosidase Ekstrak Umbi Bawang Dayak. Jurnal Teknologi Dan Industri Pangan 2013;24:161–7. https://doi.org/10.6066/jtip.2013.24.2.161.