Effect of Ultraviolet-C Irradiation on Morphological Character Changes in Patchouli (Pogostemon cablin Benth.)

##plugins.themes.academic_pro.article.main##

Sindi Haryanti
Yusniwati Yusniwati
Gustian Gustian

Abstract

Patchouli (Pogostemon cablin Benth.) is among the top 20 essential oil-producing plants traded in the global market. This plant shows narrow genetic diversity due to non-flowering and seed production, increasing the challenges in obtaining new varieties through crossbreeding. Therefore, this research aimed to apply mutation method using ultraviolet-C irradiation combined with tissue culture to broaden the genetic diversity of patchouli. The potential of UV-C irradiation and the morphological changes occurring in the plant were explored from October to December 2023 at the Tissue Culture Laboratory, Andalas University, Padang. In addition, the experiment was arranged in a Randomized Complete Block Design (RCBD) with 10 treatment levels and 3 groups. The treatments included UV-C irradiation doses of 0 (wild type), 30, 60, 90, 120, 150, 180, 210, 240, and 270 minutes at a distance of 30 cm. Data for each patchouli plant per observation variable were presented as mean values, variance, and standard deviation and analyzed using an unpaired t-test. The results showed that exposure to ultraviolet-C radiation impacted several morphological characteristics, such as chlorosis, delayed bud development, increased bud and leaf count, as well as faster bud growth. This phenomenon shows the potential of ultraviolet-C radiation as a physical mutagenic agent.

##plugins.themes.academic_pro.article.details##

Author Biographies

Sindi Haryanti, Andalas University

Department of Agronomy, Faculty of Agriculture

Yusniwati Yusniwati, Andalas University

Department of Agronomy, Faculty of Agriculture

Gustian Gustian, Andalas University

Department of Agronomy, Faculty of Agriculture

How to Cite
Haryanti, S., Yusniwati, Y., & Gustian, G. (2024). Effect of Ultraviolet-C Irradiation on Morphological Character Changes in Patchouli (Pogostemon cablin Benth.). Journal of Applied Agricultural Science and Technology, 8(3), 347-358. https://doi.org/10.55043/jaast.v8i3.284

References

  1. Swamy MK, Sinniah UR. Patchouli (Pogostemon cablin Benth.): Botany, agrotechnology and biotechnological aspects. Ind Crops Prod 2016;87:161–76. https://doi.org/10.1016/j.indcrop.2016.04.032.
  2. Huang H, Wu W, Zhang J, Wang L, Yuan Y, Ge X. A genetic delineation of Patchouli ( Pogostemon cablin ) revealed by specific‐locus amplified fragment sequencing. J Syst Evol 2016;54:491–501. https://doi.org/10.1111/jse.12195.
  3. Sukarman. Pengaruh Jarak Tanam dan Dosis Pupuk Kandang terhadap Produksi dan Viabilitas Benih Stek Nilam (Pogostemon cablin Benth). Jurnal Littri 2012;18:81–7. https://repository.pertanian.go.id/bitstreams/de029c1b-ae23-4af0-bbfd-5da4931d1853/download
  4. Zhou L, Wang Y, Han L, Wang Q, Liu H, Cheng P, et al. Enhancement of Patchoulol Production in Escherichia coli via Multiple Engineering Strategies. J Agric Food Chem 2021;69:7572–80. https://doi.org/10.1021/acs.jafc.1c02399.
  5. Harli H. Identifikasi dan Potensi Perluasan Tanaman Nilam (Pogostemon cablin Benth.) di Bawah Tegakan Kakao di Kabupaten Polewali Mandar. Agrovital 2016;1:21–6. https://journal.lppm-unasman.ac.id/index.php/agrovital/article/view/80
  6. Manubelu SKK. Induksi Proliferasi Tunas Nilam (Pogostemon cablin Benth.) Varietas Sidikalang dengan Penambahan BAP, Gula, dan Kitosan untuk Produksi Biomassa Nilam Secara In Vitro. Undergraduate Thesis. Bogor Agricultural University (IPB), 2017. https://repository.ipb.ac.id/handle/123456789/89039?show=full
  7. Badan Pusat Statistik. Statistik Indonesia 2022. BPS - Statistics Indonesia 2022. https://www.bps.go.id/id/publication/2022/02/25/0a2afea4fab72a5d052cb315/statistik-indonesia-2022.html
  8. Li C-W, Wu X-L, Zhao X-N, Su Z-Q, Chen H-M, Wang X-F, et al. Anti‐Inflammatory Property of the Ethanol Extract of the Root and Rhizome of Pogostemon cablin (Blanco) Benth. The Scientific World Journal 2013;2013. https://doi.org/10.1155/2013/434151.
  9. Lestari EG. Combination of Somaclonal Variation and Mutagenesis for Crop Improvement. Jurnal AgroBiogen 2012;8:38–44. https://doi.org/10.21082/jbio.v8n1.2012.p38-44.
  10. Manzoor A, Ahmad T, Bashir M, Hafiz I, Silvestri C. Studies on Colchicine Induced Chromosome Doubling for Enhancement of Quality Traits in Ornamental Plants. Plants 2019;8:194. https://doi.org/10.3390/plants8070194.
  11. Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, et al. In vivo and in vitro random mutagenesis techniques in plants. EFSA Journal 2021;19. https://doi.org/10.2903/j.efsa.2021.6611.
  12. Novak FJ, Brunner H. Plant Breeding: Induced Mutation Technology for Crop Improvement. IAEA Bulletin 1992;4:25–33. https://www.iaea.org/sites/default/files/34405682533.pdf
  13. Parekh S, Vinci VA, Strobel RJ. Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 2000;54:287–301. https://doi.org/10.1007/s002530000403.
  14. Shetta ND, Areaf IM. Impact of Ultraviolet-C Radiation on Seed Germination and Chlorophyll Concentration of Some Woody Trees Grown in Saudi Arabia. Journal of Agricultural, Food, and Environmental Sciences 2009;8:1–21. http://www.damanhour.edu.eg/pdf/agrfac/Root1/Vol8_2_1.pdf
  15. Najeeb U, Xu L, Ahmed ZI, Rasheed M, Jilani G, Naeem MS, et al. Ultraviolet-C mediated physiological and ultrastructural alterations in Juncus effusus L. shoot. Acta Physiol Plant 2011;33:481–8. https://doi.org/10.1007/s11738-010-0570-2.
  16. Abdulkareem KA, Musthapa OT, Garuba T, Kasture A, Oyeyiola OB. Mutagenic Role of Artificial Ultraviolet (UVC) Irradiation on the Growth and Yield of Tomato (Solanum Lycopersicon L.). Journal of Pharmacy and Applied Sciences 2015;2:16–20. https://app.utu.ac.in/jpas/PublishArticles/2015V2i1/JPAS%202015%202%20(1)%2016-20.pdf
  17. Khan TU, Laskar RA, Debnath B. Studies on the Effects of Ultraviolet Irradiation on Pea (Pisum sativum L.). Int J Genom Data Min 2018;4. https://doi.org/10.29011/2577-0616.000126.
  18. Sari A, Purwantoro A, Hadipoentyanti E. Ketahanan Klon Somatis Nilam (Pogostemon cablin Benth.) Terhadap Ralstonia solanacearum. VEGETALIKA 2012;1. https://doi.org/10.22146/veg.1392
  19. Khaerina DI. Induksi Mutasi dan Seleksi In Vitro Kalus Nilam (Pogostemon cablin Benth.) untuk Toleransi terhadap Cekaman Kekeringan. Institut Pertanian Bogor, 2018. https://repository.ipb.ac.id/handle/123456789/93116
  20. Anne YP, Wiendi NMA. Induksi Mutasi Melalui Penggandaan Kromosom Nilam Varietas Sidikalang (Pogostemon cablin Benth.) dengan Kolkisin Secara In Vitro. Simposium dan Seminar Bersama PERAGI-PERHORTI-PERIPI-HIGI: Mendukung Kedaulatan Pangan dan Energi yang Berkelanjutan, Bogor: 2012. https://repository.ipb.ac.id/handle/123456789/60161
  21. Afifah UAN. Evaluasi Fenotipe Nilam (Pogostemon cablin Benth.) Varietas Sidikalang Hasil Mutasi Kromosom dengan Kolkisin. IPB University, 2015. https://repository.ipb.ac.id/handle/123456789/75507
  22. Zuyasna Z, Marliah A, Rahayu A, Hayati E, Husna R. Pertumbuhan Tanaman Nilam MV1 Varietas Lhokseumawe Akibat Konsentrasi dan Lama Perendaman Kolkisin. Agro Bali: Agricultural Journal 2021;4:23–33. https://doi.org/10.37637/ab.v0i0.683.
  23. Silalahi V. Monitoring Kesehatan Pohon Mahoni (Swieteniamacrophylla) di Kampus Universitas Sumatera Utara. 2017. https://repositori.usu.ac.id/handle/123456789/3359
  24. Ningsih TU. Pengaruh Radiasi -C dan Periode Penyiraman terhadap Kandungan Flavonoid Daun Sambung Nyawa (Gynura procumbens L.). Bogor: 2010. https://repository.ipb.ac.id/handle/123456789/36264
  25. Urban O, Hrstka M, Holub P, Veselá B, Večeřová K, Novotná K, et al. Interactive effects of ultraviolet radiation and elevated CO2 concentration on photosynthetic characteristics of European beech saplings during the vegetation season. Plant Physiology and Biochemistry 2019;134:20–30. https://doi.org/10.1016/j.plaphy.2018.08.026.
  26. Kovács E, Keresztes Á. Effect of gamma and UV-B/C radiation on plant cells. Micron 2002;33:199–210. https://doi.org/10.1016/S0968-4328(01)00012-9.
  27. Sarinaningsih S. Pengaruh Intensitas, Lama Waktu Penyinaran, dan Posisi Sumber Sinar Ultraviolet terhadap Reduksi Jumlah Bakteri Escherichia colii pada Air Sumur . Universitas Mataram, 2018. http://eprints.unram.ac.id/11270/
  28. Cechin I, Corniani N, de Fátima Fumis T, Cataneo AC. Ultraviolet-B and water stress effects on growth, gas exchange and oxidative stress in sunflower plants. Radiat Environ Biophys 2008;47:405–13. https://doi.org/10.1007/s00411-008-0167-y.
  29. Wituszyńska W, Szechyńska‐Hebda M, Sobczak M, Rusaczonek A, Kozłowska‐Makulska A, Witoń D, et al. Lesion Simulating Disease 1 and Enhanced Disease Susceptibility 1 differentially regulate UV‐C‐induced photooxidative stress signalling and programmed cell death in A rabidopsis thaliana. Plant Cell Environ 2015;38:315–30. https://doi.org/10.1111/pce.12288.
  30. Rusaczonek A, Czarnocka W, Willems P, Sujkowska-Rybkowska M, Van Breusegem F, Karpiński S. Phototropin 1 and 2 Influence Photosynthesis, UV-C Induced Photooxidative Stress Responses, and Cell Death. Cells 2021;10:200. https://doi.org/10.3390/cells10020200.
  31. Yang Y, Fu Q, Yang C, Rao X, Wu Z, Wu Z, et al. Effects of Mg on chlorophyll degradation and leaf chroma during the airing of cigar tobacco leaves. Acta Societatis Botanicorum Poloniae 2023;92. https://doi.org/10.5586/asbp/168235.
  32. Afza H, Iriawati N. Pengaruh Iradiasi Ultraviolet terhadap Multiplikasi Tunas Aksiler dan Kadar Klorofil Anyelir (Dianthus caryophyllus L.). Buletin Plasma Nutfah 2016;21:39. https://doi.org/10.21082/blpn.v21n1.2015.p39-46.
  33. Sankari M, Hridya H, Sneha P, George Priya Doss C, Ramamoorthy S. Effect of UV radiation and its implications on carotenoid pathway in Bixa orellana L. J Photochem Photobiol B 2017;176:136–44. https://doi.org/10.1016/j.jphotobiol.2017.10.002.
  34. Rastogi RP, Richa, Kumar A, Tyagi MB, Sinha RP. Molecular Mechanisms of Ultraviolet Radiation‐Induced DNA Damage and Repair. J Nucleic Acids 2010;2010. https://doi.org/10.4061/2010/592980.
  35. Lario LD, Ramirez-Parra E, Gutierrez C, Casati P, Spampinato CP. Regulation of plant MSH2 and MSH6 genes in the UV-B-induced DNA damage response. J Exp Bot 2011;62:2925–37. https://doi.org/10.1093/jxb/err001.
  36. Wulan MT. Peningkatan Keragaman Kembang Sepatu (Hibiscus Roso-Sinensis Linn.) Melalui Mutasi Iuduksi Dengan Iradiasi Sinar Gama. IPB University, 2007. https://repository.ipb.ac.id/handle/123456789/55986
  37. Mayerni R. The Direct Organogenesis In Local Clones Of Patchouli Plant( Pogostemon cablin Benth)InVitro. JERAMI Indonesian Journal of Crop Science 2020;3:16–9. https://doi.org/10.25077/jijcs.3.1.16-19.2020.
  38. Yulia E, Baiti N, Handayani RS, Nilahayati N. Respon Pemberian Beberapa Konsentrasi BAP dan IAA terhadap Pertumbuhan Sub-Kultur Anggrek Cymbidium (Cymbidium finlaysonianum Lindl.) secara In-Vitro. Jurnal Agrium 2020;17. https://doi.org/10.29103/agrium.v17i2.5870.
  39. Sagai E, Doodoh B, Kojoh D. Pengaruh Zat Pengatur Tumbuh Benzil Amino Purin (BAP) terhadap Induksi dan Multiplikasi Tunas Brokoli Brassica oleraceae L. var. italicaPlenck. Cocos 2016;7. https://ejournal.unsrat.ac.id/index.php/cocos/article/view/13885
  40. Rasool S, Hameed A, Azooz MM, Muneeb-u-Rehman, Siddiqi TO, Ahmad P. Salt Stress: Causes, Types and Responses of Plants. Ecophysiology and Responses of Plants under Salt Stress, New York, NY: Springer New York; 2013, p. 1–24. https://doi.org/10.1007/978-1-4614-4747-4_1.
  41. Shabala S, Bose J, Fuglsang AT, Pottosin I. On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils. J Exp Bot 2016;67:1015–31. https://doi.org/10.1093/jxb/erv465.
  42. Kazan K, Lyons R. The link between flowering time and stress tolerance. J Exp Bot 2016;67:47–60. https://doi.org/10.1093/jxb/erv441.
  43. Helena A, Restiani R, Aditiyarini D. Optimasi Antioksidan sebagai Penghambat Browning pada Tahap Inisiasi Kultur In Vitro Bambu Petung (Dendrocalamus asper). Biota : Jurnal Ilmiah Ilmu-Ilmu Hayati 2022:86–93. https://doi.org/10.24002/biota.v7i2.4715.
  44. Pinto EP, Perin EC, Schott IB, da Silva Rodrigues R, Lucchetta L, Manfroi V, et al. The effect of postharvest application of UV-C radiation on the phenolic compounds of conventional and organic grapes ( Vitis labrusca cv. ‘Concord’). Postharvest Biol Technol 2016;120:84–91. https://doi.org/10.1016/j.postharvbio.2016.05.015.
  45. Hutami S. ULASAN Masalah Pencoklatan pada Kultur Jaringan. Jurnal AgroBiogen 2016;4:83. https://doi.org/10.21082/jbio.v4n2.2008.p83-88.
  46. Ahmad I, Hussain T, Ashraf I, Nafees M, Maryam M, Rafay M, et al. Lethal Effect of Secondary Metabolites on Plant Tissue Culture. American-Eurasian J Agric & Environ, Sci 2013;13:539–47. https://dx.doi.org/10.21082/blpn.v21n1.2015.p39-46
  47. Wulandari YA, Helfi G, Rosdiana R, Sudirman S. Induksi Mutasi Iradiasi Sinar Gamma pada Tanaman Rosella (Hibiscus sabdariffa L.). Jurnal Agrosains Dan Teknologi 2022;7:99–108. https://jurnal.umj.ac.id/index.php/ftan/article/view/14973
  48. Roychoudhury S, Jha NK, Ruokolainen J, Kesari KK. Mutagenic factors in the environment impacting human and animal health. Environmental Science and Pollution Research 2022;29:61967–71. https://doi.org/10.1007/s11356-022-22247-x.
  49. Aisyah S. Induksi Mutasi. Bogor: IPB Press; 2013.
  50. Rahman QK, Aisyah SI. Induksi Mutasi Fisik pada Paku Bintik (Microsorum punctatum) melalui Iradiasi Sinar Gamma. Buletin Agrohorti 2018;6:422–9. https://doi.org/10.29244/agrob.v6i3.21112.
  51. WARID W, KHUMAIDA N, PURWITO A, SYUKUR M. Pengaruh Iradiasi Sinar Gamma pada Generasi Pertama (M1) untuk Mendapatkan Genotipe Unggul Baru Kedelai Toleran Kekeringan. Agrotrop : Journal on Agriculture Science 2017;7. https://garuda.kemdikbud.go.id/documents/detail/1339856
  52. Harsanti L, Yulidar Y. Pengaruh Iradiasi Sinar Gamma terhadap Pertumbuhan Awal Tanaman Kedelai (Glycine max L. Merril.) var. Denna 1. Pertemuan dan Presentasi Ilmiah - Penelitian Dasar Ilmu Pengetahuan dan Teknologi Nuklir BATAN, Yogyakarta: 2015. https://inis.iaea.org/collection/NCLCollectionStore/_Public/47/100/47100095.pdf
  53. Amelia ZR, Supriyanto, Wulandari AS. Effect of 6-BAP application on shoot production of Melaleuca alternifolia seedlings. IOP Conf Ser Earth Environ Sci 2020;528:012063. https://doi.org/10.1088/1755-1315/528/1/012063.
  54. Triyastuti N, Rahayu ES, Widiatningrum T. Optimasi Pertumbuhan Plantlet Krisan melalui Peningkatan Permeabilitas Tutup Botol dan Penurunan Sukrosa. Jurnal MIPA 2018;41:20–6. https://journal.unnes.ac.id/nju/index.php/JM/article/view/15816