Height and Diameter Measurement of Eucalyptus Urophylla in Batur Mountain Nature Tourist Forest, Indonesia


I Gusti Ayu Diah Yuniti
Jhon Hardy Purba
Liris Lis Komara
Nanang Sasmita


Batur Forest is a volcanic area that was an ex-volcanic eruption. Efforts to rehabilitate forests with critical land were by planting Eucalyptus urophylla. The aim of the study was to examine the adaptation of Eucalyptus urophylla species in critical areas of former volcanic eruptions that were dominated by hard rocks. The research was done for a year (2019-2020). The method used was a species test with a permanent block plot design from 4 age levels, 1 year, 5 years, 10 years, and 15 years. The study results showed growth of 1.02 cm in diameter and 1.10 m in height (1 year), 6.50 cm in diameter and 11.00 m in height (5 years), 13.25 cm in diameter and 18.40 m in height (10 years), and a diameter of 20.48 cm and a height of 23.00 m (15 years). Eucalyptus urophylla experienced the best tree diameter growth after 10 years old and on the contrary experienced a decrease in height. The Eucalyptus urophylla level of adaptation and suitability of volcanic soils with low fertility and rocky soil is a recommendation to increase the quantity of this species of planting. So that the forest succession from rocky thickets to tree vegetation is faster than natural processes. Eucalyptus urophylla species is one of the flora that makes up the savanna forest ecosystem and volcanic critical land in eastern Indonesia.


Author Biographies

I Gusti Ayu Diah Yuniti, Mahasaraswati University

Faculty of Agriculture

Jhon Hardy Purba, Panji Sakti University

Faculty of Agriculture

Liris Lis Komara, East Kutai

East Kutai School of Agriculture

Nanang Sasmita, Udayana University

Faculty of Agriculture

How to Cite
Yuniti, I. G. A. D. ., Purba, J. H., Komara, L. L. ., & Sasmita, N. . (2022). Height and Diameter Measurement of Eucalyptus Urophylla in Batur Mountain Nature Tourist Forest, Indonesia. Journal of Applied Agricultural Science and Technology, 6(2), 162-170. https://doi.org/10.55043/jaast.v6i2.72


  1. Alencar, G. S. B. de. (2002). Estudo da qualidade da madeira para produção de celulose relacionada a precocidade na seleção de um híbrido Eucalyptus grandis x Eucalyptus urophylla [Universidade de São Paulo]. https://doi.org/10.11606/D.11.2019.tde-20190821-132709
  2. Almeida, M. N. F. d. (2020). Heartwood variation of Eucalyptus urophylla is influenced by climatic conditions. Forest Ecology and Management, 458. https://doi.org/10.1016/j.foreco.2019.117743
  3. Arsyad, S. (1989). Soil and water conservation. Bogor Agricultural Institute.
  4. Astawa, I. B. M. (2011). Analisis Perwilayah Potensi Sumberdaya Kawasan Gunung Batur, Bangli. Jurnal Pendidikan Geografi. 16(1).
  5. Barbosa, V. (2017). Biomass, carbon and nitrogen in the accumulated litter of planted and native forests. Floresta e Ambiente, 24. https://doi.org/10.1590/2179-8087.024315
  6. Beese, W. J., & Arnott, J. T. (1999). Montane Alternative Silvicultural Systems (MASS): Establishing and managing a multi-disciplinary, multi-partner research site. The Forestry Chronicle, 75(3), 413–416. https://doi.org/10.5558/tfc75413-3
  7. Desalle, R., & Amato, G. (2017). Conservation Genetics, Precision Conservation, and De-extinction. Hastings Center Report, 47, S18–S23. https://doi.org/10.1002/hast.747
  8. Elli, E. F., Caron, B. O., Behling, A., Eloy, E., Queiróz De Souza, V., Schwerz, F., & Stolzle, J. R. (2017). Climatic factors defining the height growth curve of forest species. iForest-Biogeosciences and Forestry, 10(3), 547. https://doi.org/10.3832/ifor2189-010
  9. Franklin, J. F., Mitchell, R. J., & Palik, B. J. (2007). Natural disturbance and stand development principles for ecological forestry. https://doi.org/10.2737/NRS-GTR-19
  10. Komara, L. L., Choesin, D. N., & Syamsudin, T. S. (2016). Plant diversity after sixteen years post coal mining in East Kalimantan, Indonesia. Biodiversitas Journal of Biological Diversity, 17(2), 531–538. https://doi.org/10.13057/biodiv/d170223
  11. Marimpan LS, Purwanto RH, Wardhana W, Sumardi. 2022. Carbon storage potential of Eucalyptus urophylla at several density levels and forest management types in dry land ecosystems. Biodiversitas 23: 2830-2837
  12. Miguel, P. (2016). Diversity and distribution of the endophytic bacterial community at different stages of Eucalyptus growth. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 109(6), 755–771. https://doi.org/10.1007/s10482-016-0676-7
  13. Nandini, R., & Narendra, B.H. (2012). Critical Land Characteristics of Former Eruption of Batur Mount in Bangli District, Bali. Jurnal Penelitian Hutan dan Konservasi Alam, 9(3), 199-211. https://doi.org/10.20886/jphka.2012.9.3.199-211.
  14. Pinheiro, R. C. (2019). Distance from the trunk and depth of uptake of labelled nitrate for dominant and suppressed trees in Brazilian Eucalyptus plantations: Consequences for fertilization practices. Forest Ecology and Management, 447, 95–104. https://doi.org/10.1016/j.foreco.2019.05.011
  15. Purba, J. H., Manik, I. W. Y., Sasmita, N., & Komara, L. L. (2020). Telajakan and mixed gardens landscape as household based agroforestry supports environmental aesthetics and religious ceremonies in Bali. In IOP Conf. Series: Earth and Environmental Science 449 (2020) - 012041,https://scholar.google.com/citations?view_op=view_citation&hl=en&user=a56xZ28AAAAJ&pagesize=100&citation_for_view=a56xZ28AAAAJ:9ZlFYXVOiuMC
  16. Purba, J. H., Sasmita, N., Komara, L. L., & Nesimnasi, N. (2019). Comparison of seed dormancy breaking of Eusideroxylon zwageri from Bali and Kalimantan soaked with sodium nitrophenolate growth regulator. Nusantara Bioscience, 11(2), 146–152. https://doi.org/10.13057/nusbiosci/n110206
  17. Santana, W. M. S. (2012). Effect of age and diameter class on the properties of wood from clonal Eucalyptus. Cerne, 18(1), 1–8. https://doi.org/10.1590/S0104-77602012000100001
  18. Sasmita, N., Purba, J. H., & Yuniti, I. G. A. D. (2019). Adaptation of Morus alba and Morus cathayana plants in a different climate and environment conditions in Indonesia. Biodiversitas Journal of Biological Diversity, 20(2), 544–554. https://doi.org/10.13057/biodiv/d200234
  19. Schmidt, F. H., & Ferguson, J. H. A. (1951). Rainfall type Based on wet and dry period ratio for Indonesia with Western New Guinea Verh. No.42. Bureau of Meteorology and Geophysics.
  20. Siregar, B. A., Giyanto, G., Hidayat, S. H., Siregar, I. Z., & Tjahjono, B. (2021). Diversity of Ralstonia pseudosolanacearum, the causal agent of bacterial wilt on Eucalyptus pellita in Indonesia. Biodiversitas Journal of Biological Diversity, 22(6), 2538–2545. https://doi.org/10.13057/biodiv/d220664
  21. Sopacua, F., Wijayanto, N., & Wirnas, D. (2021). Growth of three types of sengon (Paraserianthes spp.) in varying planting spaces in agroforestry system. Biodiversitas Journal of Biological Diversity, 22(10), 4423–4430. https://doi.org/10.13057/biodiv/d221035
  22. Susanti, Y., Giyanto, G., Sinaga, M. S., Mutaqin, K. H., & Tjahyono, B. (2021). The potential of endophytic bacteria from the root of Eucalyptus pellita as a biocontrol agent against Ralstonia solanacearum. Biodiversitas Journal of Biological Diversity, 22(6), 3454–3462. https://doi.org/10.13057/biodiv/d220654
  23. Susilowati, A., Rachmat, H. H., Elfiati, D., Hidayat, A., Hadi, A. N., Zaitunah, A., Nainggolan, D., & Ginting, I. M. (2021). Floristic composition and diversity at Keruing (Dipterocarpus spp.) habitat in Tangkahan, Gunung Leuser National Park, Indonesia. Biodiversitas Journal of Biological Diversity, 22(10), 4448–4456. https://doi.org/10.13057/biodiv/d221038
  24. Wiharto, M., Kusmana, C., Prasetyo, L. B., & Partomihardjo, T. (2008). Distribution of tree diameter classes on various vegetation species in Salak mountain, Bogor, West Java. Indonesian Journal of Agricultural Sci, 13(2), 95–102.
  25. Wirabuana, P. Y. A. P., Alam, S., Matatula, J., Marghiy Harahap, M., Nugroho, Y., Idris, F., Meinata, A., & Ayu Sekar, D. (2021). The growth, aboveground biomass, crown development, and leaf characteristics of three Eucalyptus species at initial stage of planting in Jepara, Indonesia. Biodiversitas Journal of Biological Diversity, 22(5), 2859–2869. https://doi.org/10.13057/biodiv/d220550
  26. Xu, K. (2015). Effects of volatile chemical components of wood species on mould growth susceptibility and termite attack resistance of wood plastic composites. International Biodeterioration and Biodegradation, 100, 106–115. https://doi.org/10.1016/j.ibiod.2015.02.002
  27. Zanuncio, A. (2013). Drying biomass for energy use of Eucalyptus urophylla and Corymbia citriodora logs. BioResources, 8(4), 5159–5168. https://doi.org/10.15376/biores.8.4.5159-5168
  28. Zhao, W. (2019). Allelopathically inhibitory effects of eucalyptus extracts on the growth of Microcystis aeruginosa. Chemosphere, 225, 424–433. https://doi.org/10.1016/j.chemosphere.2019.03.070
  29. Zhao, X. (2017). Review of heterogeneous catalysts for catalytically upgrading vegetable oils into hydrocarbon biofuels. In Catalysts, 7(3), 1-25x`. https://doi.org/10.3390/catal7030083

Most read articles by the same author(s)