Optimization of Fluid-Type Roasting Machine on Robusta Roasted Coffee Characteristics

##plugins.themes.academic_pro.article.main##

Ari Rahayuningtyas
Ida Farikha Azizah
Steven Witman
Dadang Dayat Hidayat
Alifia Fauziah Rohzan
Yusep Ikrawan
Ngatinem Ngatinem

Abstract

Coffee is a superior plantation commodity playing an important role in Indonesian economic growth, as a contributor to income and provider of employment. The handling process of coffee, particularly at roasting stage, has a significant impact on the quality of the final product. The Research Center for Appropriate Technology, National Research and Innovation Agency, has developed fluid-type roasting machine with a capacity of 750 grams (g) and fueled by LPG (liquefied petroleum gas). Therefore, this research aimed to determine the characteristics of robusta roasted coffee through performance tests of fluid-type roasting machine. Performance tests were carried out to determine the static characteristics of temperature sensor and ensure accurate provision as well as consistent readings in effectively controlling roasting process. Some of the characteristics that were determined included moisture content by thermogravimetric method, color, texture, caffeine, and microscopic analysis. The results showed that fluid-type roasting machine had a high-temperature sensor accuracy of 1.3% and repeatability of 0.69. The physical and chemical analysis showed that roasting temperature significantly affected the characteristics of roasted coffee beans. Additionally, higher temperature caused an increase in cracking of coffee beans, ash content, texture, caffeine content, and darker color, along with lower moisture content.

##plugins.themes.academic_pro.article.details##

Author Biographies

Alifia Fauziah Rohzan, Pasundan University

Food of Technology

Yusep Ikrawan, Pasundan University

Food of Technology

Ngatinem Ngatinem, National Research and Innovation Agency

Research center for medicinal raw materials and traditional medicine

How to Cite
Rahayuningtyas, A. ., Azizah, I. F., Witman, S., Hidayat, D. D., Rohzan, A. F., Ikrawan, Y., & Ngatinem, N. (2024). Optimization of Fluid-Type Roasting Machine on Robusta Roasted Coffee Characteristics. Journal of Applied Agricultural Science and Technology, 8(3), 359-374. https://doi.org/10.55043/jaast.v8i3.282

References

  1. Baso RL, Anindita R. Analisis Daya Saing Kopi Indonesia. Jurnal Ekonomi Pertanian Dan Agribisnis 2018;2:1–9. https://doi.org/10.21776/ub.jepa.2018.002.01.1.
  2. Putri NA, Saidah Z, Supyandi D, Trimo L. Analisis Kelayakan Bisnis Kedai Kopi (Studi Kasus Pada Agrowisata N8 Malabar, Pangalengan, Kabupaten Bandung). Journal of Food System and Agribusiness 2020:89–100. https://doi.org/10.25181/jofsa.v3i2.1564.
  3. Febrianto NA, Zhu F. Coffee bean processing: Emerging methods and their effects on chemical, biological and sensory properties. Food Chem 2023;412:135489. https://doi.org/10.1016/j.foodchem.2023.135489.
  4. Priantari I, Dharmawan A. Characterization Roasting Level of Arabica Coffee (Coffea arabica) Komasti and Andungsari. Jurnal Biologi UNAND 2022;10:33. https://doi.org/10.25077/jbioua.10.1.33-41.2022.
  5. Fikri AMK, Nuriman N, Yushardi Y. Pengaruh Suhu dan Lama Waktu Roasting terhadap Massa Jenis Biji Kopi Robusta Menggunakan Mesin Roasting Tipe Hot Air. JURNAL PENDIDIKAN MIPA 2022;12:249–54. https://doi.org/10.37630/jpm.v12i2.601.
  6. Cao X, Wu H, Viejo CG, Dunshea FR, Suleria HAR. Effects of postharvest processing on aroma formation in roasted coffee – a review. Int J Food Sci Technol 2023;58:1007–27. https://doi.org/10.1111/ijfs.16261.
  7. Ogunjirin OA, Odeniyi OM, Olubo AS, Farounbi AJ, Ola OA, Adeleke SA. Design and construction of an electrically powered coffee roasting machine. IOP Conf Ser Earth Environ Sci 2020;445:012009. https://doi.org/10.1088/1755-1315/445/1/012009.
  8. Radi, Purwantana B, Alamsyah RP, Prawira HD. Design of Portable Coffee Roaster for Home Industry. IOP Conf Ser Earth Environ Sci 2019;327:012019. https://doi.org/10.1088/1755-1315/327/1/012019.
  9. Nopriandy F, Suhendra S, Anjiu LD. Kajian Eksperimental Mesin Sangrai Kopi Semi Otomatis Tipe Drum Rotari. TURBO Jurnal Program Studi Teknik Mesin UM Metro 2023;12:161–8. https://ojs.ummetro.ac.id/index.php/turbo/article/view/2313
  10. Purnamayanti NPA, Gunadnya IBP, Arda G. Pengaruh Suhu dan Lama Penyangraian Terhadap Karakteristik Fisik dan Mutu Sensori Kopi Arabika (Coffea arabica L). Jurnal BETA (Biosistem Dan Teknik Pertanian 2017;5:39–48. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi79dDq9vSEAxVGSGwGHR3wCYUQFnoECBIQAQ&url=https%3A%2F%2Fojs.unud.ac.id%2Findex.php%2Fbeta%2Farticle%2Fdownload%2F33128%2F20490%2F&usg=AOvVaw3Ht9LxM342Kwycp2pZq3KF&opi=89978449
  11. Kusmiyanti M, Trinovani E, Suryaningthias P, Rhamadianto MI. Penetapan Kadar Kafein Dalam Kopi Rempah Menggunakan Metode Kromatografi Cair Kinerja Tinggi. Pharmauho: Jurnal Farmasi, Sains, Dan Kesehatan 2023;9:14–9. https://doi.org/10.3372/pharmauho.v9i2.47
  12. AlFaris NA, ALTamimi JZ, ALOthman ZA, Wabaidur SM, Ghafar AA, Aldayel TS. Development of a sensitive liquid-liquid extraction and ultra-performance liquid chromatography-tandem mass spectrometry method for the analysis of carbaryl residues in fresh vegetables sold in Riyadh. J King Saud Univ Sci 2020;32:2414–8. https://doi.org/10.1016/j.jksus.2020.03.030.
  13. Majors RE. Current trends in HPLC column usage. LCGC North America 2007;25:532–44.
  14. Najmi A, Rehman Z ur, Zoghebi K, Alhazmi HA, Albratty MM, Haroobi QYH, et al. Central composite design (CCD) approach to develop HPLC method for caffeine: Application to coffee samples analysis of Jazan region, Saudi Arabia. Journal of Saudi Chemical Society 2024;28:101772. https://doi.org/10.1016/j.jscs.2023.101772.
  15. Smith JH, McNair HM. Fast HPLC with a Silica-Based Monolithic ODS Column. J Chromatogr Sci 2003;41:209–14. https://doi.org/10.1093/chromsci/41.4.209.
  16. Pokhrel P, Shrestha S, Rijal SK, Rai KP. A simple HPLC Method for the Determination of Caffeine Content in Tea and Coffee. Journal of Food Science and Technology Nepal 2016;9:74–8. https://doi.org/10.3126/jfstn.v9i0.16200.
  17. Dalimunthe AK, Priyambada, Supriyanto G. Pengaruh Suhu Pemanasan Terhadap Waktu Roasting Biji Kopi Arabika Jenis Gayo Varietas Abbysinia Di Tilasawa Coffee Roaster Yogyakarta. Agricultural Engineering Innovation Journal 2023;1:77–94. https://doi.org/10.55180/aei.v1i2.716.
  18. RS Components Ltd. Thermocouple Selection Guide 2017.
  19. Buchman S, Mester J, Sumner TJ. Charge measurement. In: Webster JG, editor. Electrical Measurement, Signal Processing, and Displays, CRC Press; 2003. https://doi.org/10.1201/9780203009406.
  20. Sumiarsih K. Rancang Bangun Sistem Monitoring Temperatur Gas Hidrogen Pada Plant Elektrolisis Air Berbasis Mikrokontroler. Institut Teknologi Sepuluh Nopember, 2016. https://repository.its.ac.id/77163/
  21. Jiwatami AMA. Aplikasi Termokopel untuk Pengukuran Suhu Autoklaf. Lontar Physics Today 2022;1:38–44. https://doi.org/10.26877/lpt.v1i1.10695.
  22. Rao S. The coffee roaster’s companion. Scott Rao, 2014
  23. Passos CP, Costa RM, Ferreira SS, Lopes GR, Cruz MT, Coimbra MA. Role of Coffee Caffeine and Chlorogenic Acids Adsorption to Polysaccharides with Impact on Brew Immunomodulation Effects. Foods 2021;10:378. https://doi.org/10.3390/foods10020378.
  24. Ley 25.632. 済無No Title No Title No Title. 2002.
  25. Fassio LO, Malta MR, Liska GR, Alvarenga ST, Sousa MMM, Farias TRT, et al. Sensory Profile and Chemical Composition of Specialty Coffees from Matas de Minas Gerais, Brazil. Journal of Agricultural Science 2017;9:78. https://doi.org/10.5539/jas.v9n9p78.
  26. Dias RCE, de Faria-Machado AF, Mercadante AZ, Bragagnolo N, Benassi M de T. Roasting process affects the profile of diterpenes in coffee. European Food Research and Technology 2014;239:961–70. https://doi.org/10.1007/s00217-014-2293-x.
  27. Prado R, Gastl M, Becker T. Aroma and color development during the production of specialty malts: A review. Compr Rev Food Sci Food Saf 2021;20:4816–40. https://doi.org/10.1111/1541-4337.12806.
  28. Dutra ER, Oliveira LS, Franca AS, Ferraz VP, Afonso RJCF. A preliminary study on the feasibility of using the composition of coffee roasting exhaust gas for the determination of the degree of roast. J Food Eng 2001;47:241–6. https://doi.org/10.1016/S0260-8774(00)00116-3.
  29. Aliah AMN, Edzuan AMF, Diana AMN. A Review of Quality Coffee Roasting Degree Evaluation. Journal of Applied Science and Agriculture 2015;10:18–23. https://www.researchgate.net/publication/280627747_A_Review_of_Quality_Coffee_Roasting_Degree_Evaluation
  30. Franca AS, Oliveira LS, Mendonça JCF, Silva XA. Physical and chemical attributes of defective crude and roasted coffee beans. Food Chem 2005;90:89–94. https://doi.org/10.1016/j.foodchem.2004.03.028.
  31. Clarke RJ. Water and Mineral Contents. Coffee, Dordrecht: Springer Netherlands; 1985, p. 42–82. https://doi.org/10.1007/978-94-009-4948-5_2.
  32. Odzakovic B, Dzinic N, Jokanovic M, Grujic S. The influence of roasting temperature on the physical properties of Arabica and Robusta coffee. Acta Periodica Technologica 2019:172–8. https://doi.org/10.2298/APT1950172O.
  33. Kiyat W El, Mentari D, Santoso N. Review: Potensi mikrobial selulase, xilanase, dan protease dalam fermentasi kopi luwak (Paradoxurus hermaphroditus) secara in vitro. Jurnal Kimia Sains Dan Aplikasi 2019;22:58–66. https://doi.org/10.14710/jksa.22.2.58-66.
  34. Vignoli JA, Viegas MC, Bassoli DG, Benassi M de T. Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and robusta coffees. Food Research International 2014;61:279–85. https://doi.org/10.1016/j.foodres.2013.06.006.
  35. Yusibani E, Ikramullah I, Yufita E, Jalil Z, Suhendi E. The Effect of Temperature and Roasting Time on The Physical Properties of Arabica and Robusta Gayo Coffee Bean. Journal of Applied Agricultural Science and Technology 2023;7:100–8. https://doi.org/10.55043/jaast.v7i2.75.