Chemical and Microbiological Characteristics of Kombucha Beverage Produced from Robusta and Arabica Coffee with Varied Roasting Profiles

##plugins.themes.academic_pro.article.main##

Dyah Ayu Savitri
Setiyono Setiyono
Susan Barbara Patricia Sembiring Meliala
Ayu Puspita Arum
Noer Novijanto
Canserlita Puteri Herliani

Abstract

Kombucha is a fermented beverage product often produced by adding kombucha culture into sweetened tea, juices, coffee, and herb extracts. Coffee is a refreshing ingredient commonly served as a beverage prepared from roasted coffee beans. Therefore, this study aimed to investigate the chemical and microbiological characteristics of kombucha beverage produced from robusta and arabica coffee through natural methods with light, medium, and dark roasting profiles. Ground-roasted robusta and arabica coffee were dissolved into a sucrose solution, then the kombucha culture was added to these treatments and fermented for 14 days at ambient temperature. Subsequently, each kombucha beverage was analyzed for Total Soluble Solid (TSS), pH, Total Titrated Acid (TTA), Soluble Vitamin C, Caffeine Content, and Total Lactic Acid Bacteria (LAB). The results showed that TSS decreased on the 14th day due to sucrose degradation by microbes. TTA increased at the end of the processing, followed by a lower pH (2.87–3.49), signifying a safe value for human consumption. The soluble Vitamin C increased on the seventh day and decreased on the 14th day, which was related to the oxidation process during fermentation. The monoanion of ascorbic acid became oxidized by oxygen molecules and formed other unstable compounds. The total LAB and caffeine content elevated along with fermentation time due to the caffeine solubility which increased in low pH solution.

##plugins.themes.academic_pro.article.details##

Author Biographies

Dyah Ayu Savitri, University of Jember

Department of Agricultural Science

Setiyono Setiyono, Universitas Jember

Department of Agricultural Science

Susan Barbara Patricia Sembiring Meliala, Universitas Jember

Department of Agricultural Science

Ayu Puspita Arum, Universitas Jember

Department of Agricultural Science

Noer Novijanto, Universitas Jember

Department of Agro-Industrial Technology

Canserlita Puteri Herliani, Universitas Jember

Department of Agricultural Science

How to Cite
Savitri, D. A., Setiyono, S., Meliala, S. B. P. S., Arum, A. P. ., Novijanto, N., & Herliani, C. P. . (2024). Chemical and Microbiological Characteristics of Kombucha Beverage Produced from Robusta and Arabica Coffee with Varied Roasting Profiles. Journal of Applied Agricultural Science and Technology, 8(3), 290-302. https://doi.org/10.55043/jaast.v8i3.286

References

  1. Şanlier N, Gökcen BB, Sezgin AC. Health benefits of fermented foods. Critical Reviews in Food Science and Nutrition 2019;59:506–27. https://doi.org/10.1080/10408398.2017.1383355.
  2. Shah AM, Tarfeen N, Mohamed H, Song Y. Fermented Foods: Their Health-Promoting Components and Potential Effects on Gut Microbiota. Fermentation 2023;9:1–23. https://doi.org/10.3390/fermentation9020118.
  3. Sharma R, Garg P, Kumar P, Bhatia SK, Kulshrestha S. Microbial Fermentation and Its Role in Quality Improvement of Fermented Foods. Fermentation 2020;6:1–20. https://doi.org/10.3390/fermentation6040106.
  4. Alexandre EMC, Aguiar NFB, Voss GB, Pintado ME. Properties of Fermented Beverages from Food Wastes/By-Products. Beverages 2023;9:45. https://doi.org/10.3390/beverages9020045.
  5. Anagnostopoulos DA, Tsaltas D. Fermented Foods and Beverages. Innovations in Traditional Foods, Elsevier; 2019, p. 257–91. https://doi.org/10.1016/B978-0-12-814887-7.00010-1.
  6. Marsh AJ, Hill C, Ross RP, Cotter PD. Fermented beverages with health-promoting potential: Past and future perspectives. Trends in Food Science and Technology 2014;38:113–24. https://doi.org/10.1016/j.tifs.2014.05.002.
  7. Narko T, Wibowo MS, Damayanti S, Wibowo I. Effect of kombucha culture on caffeine and chlorogenic acid content in fermentation of robusta green coffee beans (Coffea canephora l.). Rasayan Journal of Chemistry 2020;13:1181–6. https://doi.org/10.31788/RJC.2020.1325675.
  8. Wistiana D, Zubaidah E. Karakteristik Kimiawi dan Mikrobiologis Kombucha dari Berbagai Daun Tinggi Fenol Selama Fermentasi. Jurnal Pangan Dan Agro Industri 2015;3:1446–57. https://doi.org/https://jpa.ub.ac.id/index.php/jpa/article/view/268.
  9. Wang F. Kombucha Culture and Component Analysis 2016:18–21. https://doi.org/10.2991/iceti-16.2016.4.
  10. Chakravorty S, Bhattacharya S, Chatzinotas A, Chakraborty W, Bhattacharya D, Gachhui R. Kombucha tea fermentation: Microbial and biochemical dynamics. International Journal of Food Microbiology 2016;220:63–72. https://doi.org/10.1016/j.ijfoodmicro.2015.12.015.
  11. Malbaša R, Lončar E, Djurić M. Comparison of the products of Kombucha fermentation on sucrose and molasses. Food Chemistry 2008;106:1039–45. https://doi.org/10.1016/j.foodchem.2007.07.020.
  12. Majid AA, Suroto DA, Utami T, Rahayu ES. Probiotic potential of kombucha drink from butterfly pea (Clitoria ternatea L.) flower with the addition of Lactiplantibacillus plantarum subsp. plantarum Dad-13. Biocatalysis and Agricultural Biotechnology 2023;51. https://doi.org/https://doi.org/10.1016/j.bcab.2023.102776.
  13. Rohaya S, Multahadi, Sulaiman I. Improving the quality of kombucha cascara with different varieties and fermentation time in diverse arabica coffee (Coffea arabica L) cultivars. Coffee Science 2022;17. https://doi.org/10.25186/.v17i.2056.
  14. Batubara S. Study on Kombucha Tea From Dragon Fruit Peel Potential as a High-Antioxidant Functional Drink. Current Developments in Nutrition 2022;6:506. https://doi.org/10.1093/cdn/nzac077.009.
  15. Primiani CN, Pujiati, Mumtahanah M, Ardhi W. Kombucha fermentation test used for various types of herbal teas. Journal of Physics: Conference Series 2018;1025. https://doi.org/10.1088/1742-6596/1025/1/012073.
  16. Watawana MI, Jayawardena N, Waisundara VY. Enhancement of the Functional Properties of Coffee Through Fermentation by “Tea Fungus” (Kombucha). Journal of Food Processing and Preservation 2015;39:2596–603. https://doi.org/10.1111/jfpp.12509.
  17. Achadiyah S. Teknologi Pengolahan Kopi dan Kakao. Yogyakarta: Instiper Yogyakarta; 2017.
  18. Dias RCE, De M, Benassi T. Discrimination between Arabica and Robusta Coffees Using Hydrosoluble Compounds: Is the Efficiency of the Parameters Dependent on the Roast Degree? Beverages 2015;1:127–39. https://doi.org/10.3390/beverages1030127.
  19. Agustina T, Silsia D, Hidayat L. The Characteristic of Robusta Powder Coffee In Various Size Types And Coffee Weight on Sachets. AGRITROPICA : Journal of Agricultural Sciences 2020;3:58–69. https://doi.org/10.31186/j.agritropica.3.2.58-69.
  20. Kinasih A, Winarsih S, Saati EA. Karakteristik Sensori Kopi Arabica Dan Robusta Menggunakan Teknik Brewing Berbeda. Jurnal Teknologi Pangan Dan Hasil Pertanian 2021;16:12. https://doi.org/10.26623/jtphp.v16i2.4545.
  21. Lire Wachamo H. Review on Health Benefit and Risk of Coffee Consumption. Med Aromat Plants (Los Angel) 2017;06. https://doi.org/10.4172/2167-0412.1000301.
  22. Pourshahidi LK, Navarini L, Petracco M, Strain JJ. A Comprehensive Overview of the Risks and Benefits of Coffee Consumption. Compr Rev Food Sci Food Saf 2016;15:671–84. https://doi.org/10.1111/1541-4337.12206.
  23. Yusibani E, Ikramullah I, Yufita E, Jalil Z, Suhendi E. The Effect of Temperature and Roasting Time on The Physical Properties of Arabica and Robusta Gayo Coffee Bean. Journal of Applied Agricultural Science and Technology 2023;7:100–8. https://doi.org/10.55043/jaast.v7i2.75.
  24. Opitz SEW, Goodman BA, Keller M, Smrke S, Wellinger M, Schenker S, et al. Understanding the Effects of Roasting on Antioxidant Components of Coffee Brews by Coupling On-line ABTS Assay to High Performance Size Exclusion Chromatography. Phytochemical Analysis 2017;28:106–14. https://doi.org/10.1002/pca.2661.
  25. Seninde DR, Chambers E, Chambers D. Determining the impact of roasting degree, coffee to water ratio and brewing method on the sensory characteristics of cold brew Ugandan coffee. Food Research International 2020;137:109667. https://doi.org/10.1016/j.foodres.2020.109667.
  26. Bueno F, Chouljenko A, Sathivel S. Development of coffee kombucha containing Lactobacillus rhamnosus and Lactobacillus casei: Gastrointestinal simulations and DNA microbial analysis. Lwt 2021;142:110980. https://doi.org/10.1016/j.lwt.2021.110980.
  27. Ferreira de Miranda J, Martins Pereira Belo G, Silva de Lima L, Alencar Silva K, Matsue Uekane T, Gonçalves Martins Gonzalez A, et al. Arabic coffee infusion based kombucha: Characterization and biological activity during fermentation, and in vivo toxicity. Food Chem 2023;412:135556. https://doi.org/10.1016/j.foodchem.2023.135556.
  28. Nana Kusdiana R, Ferdi V, Kusumawardhana I, Levyta F. Hedonic test of kombucha coffee. IOP Conf Ser Mater Sci Eng 2020;924. https://doi.org/10.1088/1757-899X/924/1/012005.
  29. SCAA. Cupping Specialty Coffee. Specialty Coffee Association of America 2015:1–10. https://www.scaa.org/PDF/resources/cupping-protocols.pdf.
  30. Winandari OP, Widiani N, Kamelia M, Rizki EP. Potential Of Vitamin C And Total Acid As Antioxidants Of Rosella Kombucha With Different Fermentation Times. Jurnal Pembelajaran Dan Biologi Nukleus 2022;8:141–8. https://doi.org/10.36987/jpbn.v8i1.2471.
  31. Hassmy NP, Abidjulu J, Yudistira A. Analisis Aktivitas Antioksidan Pada Teh Hijau Kombucha Berdasarkan Waktu Fermentasi Yang Optimal. PHARMACONJurnal Ilmiah Farmasi-UNSRAT 2017;6:1–8. https://doi.org/https://doi.org/10.35799/pha.6.2017.17719.
  32. Hafsari AR, A GA, Farida WN, S MA. Karakteristik pH Kultur Kombucha Teh Hitam Dengan Jenis Gula Berbeda Pada Fermentasi Bacth-Culture. Seminar Nasional Biologi (SEMABIO) 6 2021;6:228–32. https://doi.org/https://jatp.ift.or.id/index.php/jatp/article/view/164.
  33. Bayu MK, Rizqiati H, Nurwantoro N. Analisis Total Padatan Terlarut, Keasaman, Kadar Lemak, dan Tingkat Viskositas pada Kefir Optima dengan Lama Fermentasi yang Berbeda. Jurnal Teknologi Pangan 2017;1:33–8. https://doi.org/10.14710/jtp.2017.17468.
  34. Poerwanty H, Fadliah AN, Alfian A, Nildayanti N, Thamrin S. Pengaruh Suhu Dan Lama Penyangraian (Roasting) Terhadap Total Asam Kopi Arabika. Agroplantae: Jurnal Ilmiah Terapan Budidaya Dan Pengelolaan Tanaman Pertanian Dan Perkebunan 2020;9:19–24. https://doi.org/10.51978/agro.v9i2.221.
  35. Kusmiah N, Waris A, Manggabarani I. Efektifitas Fermentor Fuzzy Digital Terhadap Kualitas Mutu Biji Kopi. Jurnal Ilmiah Teknologi Pertanian Agrotechno 2021;6:80. https://doi.org/10.24843/jitpa.2021.v06.i02.p05.
  36. Arinda Nur Fitriana Y, Shabrina Fitri A. Analisis Kadar Vitamin C pada Buah Jeruk Menggunakan Metode Titrasi Iodometri Analysis of Vitamin C Levels in Citrus Fruits Using the Iodometric Titration Method. Jurnal Sainteks 2020;17:27–32. https://doi.org/10.30595/sainteks.v17i1.8530.
  37. Suwiyarsa IN, Nuryanti S, Hamzah B. Analisis Kadar Kafein dalam Kopi Bubuk Lokal yang Beredar di Kota Palu Analysis of Caffeine Level in Local Coffee Powder that Circulates in Palu City. Jurnal Akademika Kimia 2018;7:189–92. https://doi.org/https://core.ac.uk/download/pdf/291476669.pdf.
  38. Kumalasari, K., E, D, Legowo, A M, Al-Baari, A N. Total Bakteri Asam Laktat, Kadar Laktosa, pH, Keasaman, Kesukaan Drink Yogurt dengan Penambahan Ekstrak Buah Kelengkeng. Jurnal Aplikasi Teknologi Pangan 2013;2:165–8. https://jatp.ift.or.id/index.php/jatp/article/view/164
  39. Muhialdin BJ, Osman FA, Muhamad R, Wan Sapawi CWNSC, Anzian A, Voon WWY, et al. Effects of sugar sources and fermentation time on the properties of tea fungus (kombucha) beverage. International Food Research Journal 2019;26:481–7. http://ifrj.upm.edu.my/26 (02) 2019/(13).pdf
  40. Zubaidah E, Ifadah RA, Afgani CA. Changes in chemichal characteristics of kombucha from various cultivars of snake fruit during fermentation. IOP Conference Series: Earth and Environmental Science 2019;230. https://doi.org/10.1088/1755-1315/230/1/012098.
  41. Bicho NC, Leitão AE, Ramalho JC, De Alvarenga NB, Lidon FC. Identification of chemical clusters discriminators of Arabica and Robusta green coffee. International Journal of Food Properties 2013;16:895–904. https://doi.org/10.1080/10942912.2011.573114.
  42. Nurikasari M, Yenny Puspitasari, Siwi YRP. Characterization And Analysis Kombucha Tea Antioxidant Activity Based on Long Fermentation As A Beverage Functional. Journal of Global Research in Public Health 2017;2:90–6. https://doi.org/10.5281/1117425.
  43. Su J, Tan Q, Wu S, Abbas B, Yang M. Application of Kombucha Fermentation Broth for Antibacterial, Antioxidant, and Anti-Inflammatory Processes. International Journal of Molecular Sciences 2023;24. https://doi.org/10.3390/ijms241813984.
  44. Reyes-Flores S, Pereira TSS, Ramírez-Rodrigues MM. Optimization of Hempseed-Added Kombucha for Increasing the Antioxidant Capacity, Protein Concentration, and Total Phenolic Content. Beverages 2023;9. https://doi.org/10.3390/beverages9020050.
  45. Sinamo KN, Ginting S, Pratama S. Effect of sugar concentration and fermentation time on secang kombucha drink. IOP Conference Series: Earth and Environmental Science 2022;977. https://doi.org/10.1088/1755-1315/977/1/012080.
  46. Nurhayati N, Yuwanti S, Urbahillah A. Physicochemical and Sensory Characteristics of the Cascara (Dried Cherries Coffee Peels) Kombucha. Jurnal Teknologi Dan Industri Pangan 2020;31:38–49. https://doi.org/10.6066/jtip.2020.31.1.38.
  47. Bauer-Petrovska B, Petrushevska-Tozi L. Mineral and water soluble vitamin content in the Kombucha drink. International Journal of Food Science and Technology 2000;35:201–5. https://doi.org/10.1046/j.1365-2621.2000.00342.x.
  48. Kartika AD, Sa L. Perbandingan Kadar Vitamin C pada Kombucha Bunga Mawar ( Rosa hybrida ) selama Masa Penyimpanan 2024;9:49–52. http://dx.doi.org/10.53342/pharmasci.v9i1.389
  49. Dosedel M, Jirkovsk E, Kujovsk L, Javorsk L, Pourov J, Mercolini L, et al. Vitamin C—Sources, Physiological Role, Kinetics, Deficiency, Use, Toxicity, and Determination. Nutrients 2021;13:1–34. https://doi.org/ 10.3390/nu13020615
  50. Dufera LT, Hofacker W, Esper A, Hensel O. Effect of packaging materials on lycopene vitamin C and water activity of dried tomato (Lycopersicon esculentum Mill.) powder during storage. Food Science and Nutrition 2023;11:6223–30. https://doi.org/10.1002/fsn3.3562.
  51. Dewhirst RA, Fry SC. The oxidation of dehydroascorbic acid and 2,3-diketogulonate by distinct reactive oxygen species. Biochemical Journal 2018;475:3451–70. https://doi.org/10.1042/BCJ20180688.
  52. Martinović LS, Birkic N, Miletić V, Antolović R, Štanfel D, Wittine K. Antioxidant Activity, Stability in Aqueous Medium and Molecular Docking/Dynamics Study of 6-Amino- and N-Methyl-6-amino-L-ascorbic Acid. International Journal of Molecular Sciences 2023;24. https://doi.org/10.3390/ijms24021410.
  53. Yin X, Chen K, Cheng H, Chen X, Feng S, Song Y, et al. Chemical Stability of Ascorbic Acid Integrated into Commercial Products: A Review on Bioactivity and Delivery Chemical Stability of Ascorbic Acid Integrated into Commercial Products: A Review on Bioactivity and Delivery Technology 2022. https://doi.org/10.3390/antiox11010153.
  54. Motora KG, Beyene TT. Determination of Caffeine in Raw and Roasted Coffee Beans of Ilu Abba Bora Zone, South West Ethiopia. Indo American Journal of Pharmaceutical Research 2017;7:463–70. https://doi.org/10.5281/zenodo.1036324.
  55. Van Cuong T, Hong Ling L, Kang Quan G, Jin S, Shu Jie S, Le Linh T, et al. Effect of Roasting Conditions on Concentration in Elements of Vietnam Robusta Coffee. Acta Universitatis Cibiniensis Series E: Food Technology 2014;18:19–34. https://doi.org/10.2478/aucft-2014-0011.
  56. Riyanti E, Silviana E, Santika M. Analisis Kandungan Kafein Pada Kopi Seduhan Warung Kopi Di Kota Banda Aceh. Lantanida Journal 2020;8:1. https://doi.org/10.22373/lj.v8i1.5759 .
  57. Farahdiba AN, Bastian F, Tawali AB, Laga A, Hasizah A. Levels of caffeine, total solution, and pH of coffee boiled water during decaffeination of robusta coffee. AIP Conference Proceedings, vol. 2596, American Institute of Physics Inc.; 2023. https://doi.org/10.1063/5.0118756.
  58. Assad M, Ashaolu TJ, Khalifa I, Baky MH, Farag MA. Dissecting the role of microorganisms in tea production of different fermentation levels: a multifaceted review of their action mechanisms, quality attributes and future perspectives. World Journal of Microbiology and Biotechnology 2023;39:1–16. https://doi.org/10.1007/s11274-023-03701-5.
  59. National Standardization Agency of Indonesia. Kopi Bubuk SNI 01-3542-2004. National Indonesia Standard 2004.
  60. Riswanto D, Rezaldi F. Kombucha Tea: a Study on the Halal of Fermented Drinks. International Journal Mathla’ul Anwar of Halal Issues 2021;1:71–7. https://doi.org/10.30653/ijma.202112.28.
  61. Petrova P, Arsov A, Tsvetanova F, Parvanova‐mancheva T, Vasileva E, Tsigoriyna L, et al. The Complex Role of Lactic Acid Bacteria in Food Detoxification. Nutrients 2022;14. https://doi.org/10.3390/nu14102038.
  62. Zapaśnik A, Sokołowska B, Bryła M. Role of Lactic Acid Bacteria in Food Preservation and Safety. Foods 2022;11. https://doi.org/10.3390/foods11091283.
  63. Sionek B, Szydłowska A, Küçükgöz K, Kołożyn-Krajewska D. Traditional and New Microorganisms in Lactic Acid Fermentation of Food. Fermentation 2023;9:1019. https://doi.org/10.3390/fermentation9121019.
  64. Wang Y, Wu J, Lv M, Shao Z, Hungwe M, Wang J, et al. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Frontiers in Bioengineering and Biotechnology 2021;9. https://doi.org/10.3389/fbioe.2021.612285.